Radio emission in Ultracool Dwarfs

Joan Climent

Collaborators: J.C. Guirado, R.Azulay, B. Gauza, M.A. Pérez-Torres, R.Rebolo, M. R. Zapatero Osorio, J.M. Marcaide and I. Martí-Vidal PhD at University of Valencia j.bautista.climent@uv.es

Ultracool Dwarfs

- Main sequence dwarfs
- Pleiades cluster stars
- RS CVn binaries
- ₭ W UMa binaries
- FK Comae stars
- Classical T Tauris
- Weak-lined T Tauris
- Magnetic chem-peculiar stars
- O Be stars
- Hot stars: nonthermal
- O Hot stars: free-free
- Symbiotic stars
- ₭ FIRST stars
- Red giants
- Brown dwarfs

Ultracool Dwarfs

- Main sequence dwarfs
- Pleiades cluster stars
- RS CVn binaries
- * W UMa binaries
- FK Comae stars
- Classical T Tauris
- Weak-lined T Tauris
- Magnetic chem-peculiar stars
- Be stars
- Hot stars: nonthermal
- O Hot stars: free-free
- Symbiotic stars
- ₭ FIRST stars
- Red giants
- Brown dwarfs

Ultracool Dwarfs are objects later than M5-7 type(stellar or sub-stellar)

Typical temperature lower 2700 K

1. The accretion model suggests that may host Earth-like planets

2. In multiple systems: relevant as benchmarks for evolutionary models.

3. The radio emission is relevant to probe the magnetic field and stellar rotation in convective objects.

4. May open a route to detect radio emission on exoplanets (spoiler alert: no luck yet!) although we are getting closer... (Kao et al. 2018)

5. Some remarkable VLBI observations

5. Some remarkable VLBI observations

Ultracool Dwarfs How many do we know (in radio)?

Source name	Other name	SpT	Var?	First radio detection
2MASS J09522188-1924319 AB		M7*		McLean et al. (2012)
2MASS J13142039+1320011 B	NLTT 33370 B	M7	Y	McLean et al. (2011)
2MASS J14563831-2809473		M7		Burgasser & Putman (2005)
2MASS J00275592+2219328 AB	LP 349-25 AB	$M8^*$	N	Phan-Bao et al. (2007)
2MASS J15010818+2250020	TVLM 513-46546	M8.5	Y	Berger (2002)
2MASS J18353790+3259545	LSR J1835+3259	M8.5	Y	Berger (2006)
2MASS J10481463-3956062	DENIS J	M9	Y	Burgasser & Putman (2005)
2MASS J00242463-0158201	BRI B0021-0214	M9.5	Y	Berger (2002)
2MASS J03393521-3525440	LP 944-20	M9.5	Y	Berger et al. (2001)
2MASS J07200325-0846499 AB		M9.5 + T5	Y	Burgasser et al. (2015)
2MASS J07464256+2000321 B		L1.5	Y	Berger et al. (2009)
2MASS J19064801+4011089	WISE J	L1		Gizis et al. (2013)
2MASS J05233822-1403022		L2.5		Berger (2006)
2MASS J00361617+1821104		L3.5	Y	Berger (2002)
2MASS J13153094-2649513 AB		L3.5+T7		Burgasser et al. (2013)
2MASS J00043484-4044058 AB		L5+L5		Lynch et al. (2016)
2MASS J04234858-0414035	SDSS J	L7.5	Y	Kao et al. (2016)
2MASS J10430758+2225236		L8	Y	Kao et al. (2016)
2MASS J06073908+2429574	WISE J	L9		Gizis et al. (2016)
2MASS J01365662+0933473	SIMP J	T2.5	Y	Kao et al. (2016)
WISEP J112254.73+255021.5		T6	Y	Route & Wolszczan (2016)
2MASS J10475385+2124234		T6.5	Y	Route & Wolszczan (2012)
2MASS J12373919+6526148		T6.5	Y	Kao et al. (2016)

23 as of mid 2017

+

a few of them since then

Williams 2017

Gauza et al. 2015

Gauza et al. 2015

Gauza et al. 2015

VHS 1256-1257 (Guirado et al. 2018) VLA X-band

VHS 1256-1257 (Guirado et al. 2018) **VLA X-band** 15" 18" **J2000** Declination 21" 24" 27" 30" -12°57'33" 02^s.2 02^s.0 01^s.8 01^s.6 01^s.4 12^h56^m02^s.6 J2000 Right Ascension

VHS1256-1257(A+B) 60 µJy component A?, B?, A+B?

VHS 1256-1257 VLA X-band (8-12 GHz)

 $\mathbf{S} \propto \mathbf{v}^{\infty}$

- $\alpha = -1.1 + / 0.3$
- Optically thin, non-thermal synchrotron or gyrosynchrotron
- No circular polarization

VHS 1256-1257 VLA L-band + 3xEVN L-band

VHS 1256-1257 VLA L-band + 3xEVN L-band

Why no detection at L-band?

- Strong variability of the binary as other UCD
- Self absorption

VHS 1256-1257 VLA L-band + 3xEVN L-band

Why no detection at L-band?

- Strong variability of the binary as other UCD
- Self absorption: model White et al. 1989

 $v_{\text{peak}} = 5.5 - 8.8 \text{ GHz}$ B = 1 - 2 kG In accordance with Reiners 2010

AB Dor A/C (Climent in prep.)

- LBA (4 antennas) @ 1.4 GHz
- 4.5 hours

AB Dor A/C (Climent in prep.)

- LBA (4 antennas) @ 1.4 GHz
- 4.5 hours

- LBA (4 antennas) @ 1.4 GHz

- 4.5 hours

AB Dor A/C

At the expected position... AB Dor C

- Flux density ~ 260 μ Jy
- Circular polarization < 15%
- Not observed at X-band

Emission might come from:

- 1. Quiescent state
- 2. Binary

- LBA (4 antennas) @ 1.4 GHz
- 4.5 hours

It had been considered a likely binary system itself by Marois et al. (2005) and Nielsen et al. (2005)

> NIR AMBER Interferometry Observations

AB Doradus C 1.2 It had been considered a likely binary AMBER @ H and K Band system itself by Marois et al. (2005) and Nielsen et al. (2005) 1.0 0.8 $Visibility^2$ Model of: 0.6 2 point sources NIR AMBER Interferometry $F_{ratio} = 0.05$ **Observations** $M_{ratio} = 3-5$ 0.4 **UT1-UT2** Separation 37 mas UT2-UT4 P.A 152.3° UT4-UT1 0.2 ∟ 10 20 30 50 70 80 40 60 90 Spatial Frequency $(M\lambda)$

Future work

- C band EVN observations this month for VHS
- EVN proposal of previously detected UCD
- VLA Proposal in order to detect radio detection of new binary systems

Thank you for your attention and... Let's eat!