

The Very Long(lived) Baseline Array Walter Brisken

6 years and I day ago Bordeaux

Future of the VLBA? (see http://www.nrao.edu)

- I was hoping to have a happy message to announce at this meeting, but... The NSF/AST Portfolio Review suggested **Divestment** of the VLBA and
- GBT (NRAO budget reduced by 35%) starting in 1-2 years. – Why?: Keep ALMA alive despite failure to double NSF budget
 - NSF is not ignoring the report; conflicted regarding NRAO

 - NRAO's response:
- Point out that today's VLBA is a new instrument w/ new science Note impact of premature VLBA closure
 - Significant evolution since input to decadal survey

 - We \$urvive, \$omehow (more N\$F, partner\$hips, ...) Possible outcomes for the VLBA:

 - Completely new operating model that preserves long baseline science Full or partial closure
 - Some mix of the above

VLBA status now

- VLBA celebrates 25 years of operation
- USNO became 50% partner for VLBA operations
 - Reduction in open skies time to about 50%
 - Huge increase in VLBA's contribution to reference frame work
- Long Baseline Observatory (LBO) formed and dissolved
 - Fair NRAO management recompetition not possible with uncertain future of VLBA
 - NSF requested proposal for reintegration and 8 years operation of VLBA
 - Proposal was well reviewed
 - Nominal start date: Oct 1, 2018
 - Outcome: to be determined any moment now

Hurricane Irma, Maria

- Two hurricanes hit St. Croix in Sep 2017
- Island power, comms down for months
 - Antenna down for 6 months
- Antenna minimally damaged, but incurred significant corrosion though disuse
- Received NSF funds to restore antenna and site to full work working condition
 - 2 months of downtime expected in next year

These are not galaxies!

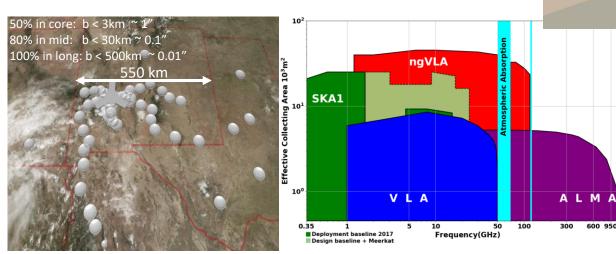
Technical direction Ongoing developments

- Mark6
 - 4 Gbps initially, 8+ Gbps later
 - Deployment process has begun
 - Full array testing before end of winter
 - Offered as Shared Risk Observing at last call
- Flexible synthesizers
 - Currently VLBA tuning is in 100 MHz steps
 - New synthesizers will tune precisely in 1 Hz steps
 - Will improve frequency matching with EVN, GMVA, IVS

Technical direction

New initiatives

- Fiber
 - To be installed at all VLBA antennas
 - Infrastructure to 10 Gbps
 - 100 to 300 Mbps initial service
 - Support diagnostics, some rapid-response science, maybe real-time spectroscopic VLBI
- New digital infrastructure
 - Replace ROACH Digital Back Ends (RDBEs)
 - Hard to maintain, no future
 - Scalable system with 100 Gbps Ethernet switch at core
 - Will support > 2 bits, non-VLBI instrumentation
 - Details of design still TBD



Technical direction Possible receiver upgrades

- X-/Ka-band dual-band capability
 - Option I: 26-40 GHz EVLA-based receiver + VLBA X-band
 - Option 1:8-35 GHz single receiver (JPL effort)
 - Linear polarized
- KVN-style multi-band receiver
 - Simultaneous 22, 43, 86 GHz receiver bands
- LNA upgrades possible to improve performance
 - X-band, Ku-band, Q-band
- User input wanted for prioritization

A next-generation Very Large Array (ngVLA)

- Scientific Frontier: Thermal imaging at milli-arcsec resolution
- Sensitivity/Resolution Goal:
 - 10x sensitivity & resolution of JVLA/ALMA
- Frequency range: 1.2 –116 GHz
- Located in Southwest U.S., centered on VLA
- Baseline design under active development
- Low technical risk (reasonable step beyond state of the art)

Complementary suite from meter to submm arrays for the mid-21st century

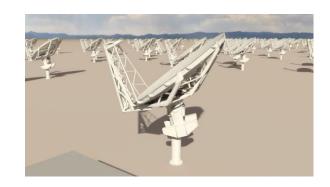
• < **0.3cm**: ALMA 2030

0.3 to 3cm: ngVLA

• > 3cm: SKA

http://ngvla.nrao.edu

Slide from Eric Murphy / ngVLA project



Current Reference Design Specifications

(ngVLA Memo #17)

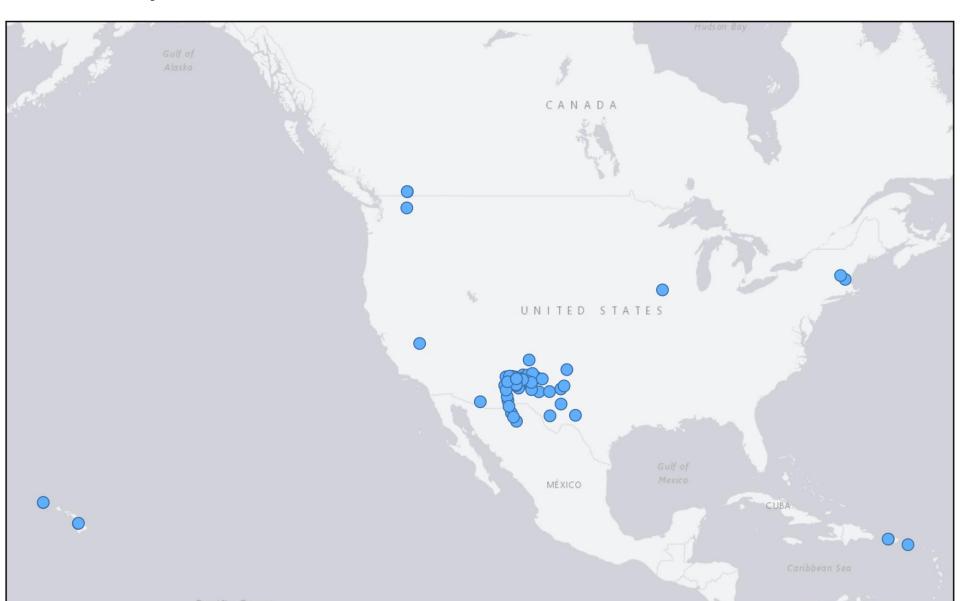
- 244 18m offset Gregorian (feed-low) Antennas
 - Supported by internal cost-performance analysis
 - 30 antennas to replace VLBA
- 19 6m short spacing array + 4 18m in TP mode to fill in (u, v) hole
- Fixed antenna locations centered in New Mexico
- 1.2 50.5 GHz; 70 116 GHz
 - Single-pixel feeds
 - 6 feeds / 2 dewar package

- Continuum Sensitivity: ~0.1 uJy/bm @ 1cm, 10mas, 10hr => T_B ~ 1.7 K
- Line sensitivity: ~19 uJy/bm @ 1cm, 10 km/s, 1", 10hr => T_B ~ 25 mK

Receiver Configuration

Band #	Dewar	f _L GHz	f _M GHz	f _H GHz	f _H : f _L	BW GHz
1	А	1.2	2.35	3.5	2.91	2.3
2	В	3.5	7.90	12.3	3.51	8.8
3	В	12.3	16.4	20.5	1.67	8.2
4	В	20.5	27.3	34.0	1.66	13.5
5	В	30.5	40.5	50.5	1.66	20.0
6	В	70.0	93.0	116	1.66	46.0

Slide from Eric Murphy / ngVLA project



ngVLA Long Baselines Conceptual distribution of antenna clusters

VLBA+

- Current extended array participation
 - High Sensitivity Array: 4%
 - VLA, Arecibo, GBT, Effelsberg
 - EVN Globals: 3%
 - GMVA: 3%
 - IVS: 4%
- Opportunity exists for broader participation
 - L-band, C-band: existing EVN+VLBA seems to be suffice
 - 3mm, <= I mm: enabled by GMVA and EHT/BHC
 - K-band, Q-band: room for improvement?
 - Need to hear from (potential) users!
- Percentages are of total observing hours

Conclusion

- Great VLBI science over past decade enable continued operation of VLBA
 - No immediate threat of closure
- ngVLA with long baselines poised to supplant the VLBA in 2030s
 - Will aim for continued VLBA operations until this time
- Significant capability increase expected at VLBA in next 10 years
 - 2x bandwidth in 2019

www.nrao.edu science.nrao.edu public.nrao.edu

The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

