Synergy IR / radio interferometers

Jose Carlos Guirado Observatorio Astronómico – Universidad de Valencia

14th EVN Symposium & Users Meeting 8-11 Octorber 2018 - Granada

- VLTI, VLBA, and ALMA can observe the same targets in terms of angular resolution and sensitivity.
- They provide complementary information on different components and regions.

<u>Telescopes</u>: CHARA: 6 x 1m VLTI : 4 x 8m + 4 x 1.8 m VLBA : 10 x 25 m ALMA : 64 x 12 m VLA : 27 x 25 m

TABLE 2. Translation Guide for Interferometric Jargon

Astronomical Result	Date	Facility	References ^a
	Padio Intest	erometry ^b	
Solar radio emission from sunspots	1945-46	Australia, Sea cliff interferometer	R1
First Radio Galaxies NGC 4486 & NGC 5128	1948	New Zealand, Sea cliff interferometer	R2
Identification of Cygnus A	1951-53	Cambridge, Würzburg antennas	R3
Cygnus A double structure	1953	Jodrell Bank, Intensity interferometer	R4
AGN superluminal motions	1971	Haystack-Goldstone VLBI	R5
Dark matter in spiral galaxies	1972-78	Caltech interferometer, Westerbork SRT	R6
Spiral arm structure & kinematics	1973-80	Westerbork SRT	R7
Compact source in Galactic center	1974	NRAO Interferometer	R8
Gravitational lenses	1979	Jodrell Bank Mk1 + Mk2 VLBI	R9
NGC 4258 black hole	1995	NRAO VLBA	R10
	ptical Inter	erometry	
Physical diameters of hot stars	1974	Narrabri Intensity Interferometer	01
Empirical effective temperature scale for giants	1987	12T/CERGA	02
Survey of IR Dust Shells	1994	ISI	03
Geometry of Be star disks	1997	Mark III	04
Near-IR Sizes of YSO disks	2001	IOTA	05
Pulsating Cepheid & Gem	2001	PTI	06
Crystalline silicates in inner YSO disks	2004	VLTI	07
Vega is a rapid rotator	2006	NPOI	08
Imaging gravity-darkening on Altair	2007	CHARA	09
Near-IR sizes of AGN	2009	Keck-I	010

Table 1. Some historically-important astronomical results made possible by interferometry

O1: Hanbury Brown et al. (1974). O2: di Benedetto & Rabbia (1987). O3: Danchi et al. (1994). O4: Quirrenbach et al. (1980b,a). R8: Goss et al. (2003). R9: Porcas et al. (1979); Walsh et al. (1979). R10: Miyoshi et al. (1995). R6: Rogstad & Shostak (1972); Bosma (1981a,b). R7: Allen et al. (1973); Rots & Shane (1975); Rots (1975); Visser "Keterences: K1: Pawsey et al. (1940); McCready et al. (1947). K2: Bolton et al. (1949). K3: Smith (1951); Baade & Minkowski (1954). R4: Jennison & Das Gupta (1953). R5: Whitney et al. (1971); Cohen et al. (1971). (1997). O5: Millan-Gabet et al. (2001). O6: Lane et al. (2000). O7: van Boekel et al. (2004). O8: Peterson et al.

(2006). O9: Monnier et al. (2007). O10: Kishimoto et al. (2009).

Monnier 2012

VLTI

Instruments

Fringe Tracker	Mag. Lim AT/UT	bands / spectral resolution	N tel.	Status	
FINITO (H)	6.5 / 9.0	H+K 35,1500,12000	З	decomm. late 2018	AMBER
i.	8.0 / 8.0	H R=5,30	4	offered	PIONIER
GRAVITY (K)	8.5 / 10.5	K R=22,500,4000	4	offered	GRAVITY
GRAVITY (K)		L+M+N R=30,5000	4	in commissioning	MATISSE

- Previous: MIDI, VINCI PRIMA also discontinued

Ertel et al. 2012

a few, perhaps biased, SCIENCE CASES

IR-interferometry from snapshot to imaging

Stellar surfaces

Zeta And (CHARA) (Roettenbacher et al. 2016)

Wittkowski et al. 2017

Fig. B.2. R ScI image reconstructions based on different image reconstruction packages. For comparison, the *top row* shows the reconstructions based on TRB1s (Hofmann et al. 2014) that we adopted as the final result (as shown in Fig. 9), followed by reconstructions based on *(middle now*) KIRA (Thiebaut 2008) and (*bottom row*) BSREX (Buscher 1994). The MIRA reconstruction uses a UD fit as a start image, smoothness as regularization function, and does not use a prior. The BSREX reconstruction uses the model atmosphere images as first start images and priors and is based on maximum entropy as regularization function. The MIRA reconstructions use double the pixel size compared to the other two reconstructions.

Stellar spots: RS Sculptoris (PIONIER)

ΔDec (mas)

Imaging stellar surfaces

Companion to RSG V766 Cen

Detailed structure of atmosphere and circumstellar envelope Detailed physics of the mass-loss process

VLTI (AMBER & MIDI):

- Size and shape of IR and MIR photosphere.
- CLV, effects by molecular layers, inhomogeneities.
- Size, chemistry, shape of the warm dust shell.

VLBA:

- SiO maser zone:
- Radio photosphere. size, shape, kinematics.
- Water and OH maser at larger distances.
- ALMA:

- mm Photosphere.
- Cool dust
- High-fidelity images
- Molecular bands / maser.
- Boboltz & Wittkowski 2005

Masers: joint VLBA/VLTI observations of Mira S Ori

Detailed physics of the mass-loss process Detailed structure of atmosphere and circumstellar envelope

VLTI (AMBER & MIDI):

- Size and shape of IR and MIR photosphere.
- CLV, effects by molecular layers, inhomogeneities.
- Size, chemistry, shape of the warm dust shell.

VLBA:

- SiO maser zone:
- size, shape, kinematics.
- Radio photosphere. Water and OH maser
- at larger distances.

ALMA:

- mm Photosphere.
- Cool dust
- High-fidelity images Molecular bands / maser.
- Boboltz & Wittkowski 2005

More about imaging:

binary VLTI/PIONIER: Image of the inner rim dust disk around a post-AGB

More about imaging:

binary VLTI/PIONIER: Image of the inner rim dust disk around a post-AGB

- Complement to a larger gaseous disk as observed by ALMA (Bujarrabal et al. 2018)
- Disks around luminous post-AGB binaries are scaled-up, more irradiated versions of protoplanetary disks around YSOs

Wind-wind collision. The triple system HD167971

Dec [mas]

VLTI/GRAVITY Massive binary fraction: Multiple Star Systems in the Orion Nebula

Imaging and astrometric capabilities of GRAVITY

Karl et al. 2018

VLTI/GRAVITY Massive binary fraction: Multiple Star Systems in the Orion Nebula

Karl et al. 2018

Low mass stars. AB Dor: LBA / VLTI

- 1. ABDorA strong radio emitter
- 2. ABDorC discovered by astrometric VLBI + dynamical mass
- 3. ABDorC difficult to image in NIR (high constrast) –10yr later
- 4. Important to calibrate stellar models
- 5. Radioemission discovered in ABDorC

Low mass stars. AB Dor: LBA / VLTI

- μ ABDorA strong radio emitter
- 2 ABDorC discovered by astrometric VLBI + dynamical mass

LBA 1.4GHz

AB Dor A

- ω ABDorC difficult to image in NIR (high constrast) –10yr later
- 4 Important to calibrate stellar models
- С ABDorC found to be also radioemitter (see talk by Climent)
- Non-standard VLTI/AMBER shows ABDorC could be binary

-100

astrometry) eEVN + CHARA observations of Algol (coronal studies +

Peterson+ 2010. (VLBA)

VLTI / GRAVITY: Microquasar SS433

VLTI / GRAVITY: Microquasar SS433

- 90% of the infrared continuum comes a central source of ~0.8 mas
- 10% IR from extended
 15mas structure
 Brγ line 1mas along the jet

Petrucci et al. 2017

The future of (NIR) interferometry

- Extending to the visible
- Polarimetry Wide field astrometry
- More sensitivity
- Higher spectral resolution
- maging capabilities

But wait to ELT/SKA era..

