

Exploring the Nature of the 2016 γ-ray Emission in the Blazar 1749+096

Dae-Won Kim, Sascha Trippe, Sang-Sung Lee, Jae-Young Kim, Juan-Carlos Algaba, Jeffrey Hodgson, Jongho Park, Motoki Kino, Guang-Yao Zhao, Kiyoaki Wajima, Jee Won Lee, Sincheol Kang

Recent Fermi-Large Area Telescope (LAT) light curves indicate an active γ -ray state spanning about five months from June 2016 to October 2016 in the BL Lac object 1749+096 (OT 081). During this period, we find two notable γ -ray events: an exceptionally strong outburst followed by a significant enhancement (local peak). In this study, we analyze multi-waveband light curves (radio, optical, X-ray, and γ -ray) plus very-long baseline interferometry (VLBI) data to investigate the nature of the γ -ray events. The γ -ray outburst coincides with flux maxima at longer wavelengths. We find a spectral hardening of the γ -ray photon index during the γ -ray outburst. The photon index shows a transition from a softer-when-brighter to a harder-when-brighter trend at around 1.8 × 10–7 ph cm–2 s–1. We see indication that both the γ -ray outburst and the subsequent enhancement precede the propagation of a polarized knot in a region near the VLBI core. The highest polarized intensity, 230 mJy, and an electric vector position angle rotation, by ~32°, are detected about 12 days after the γ -ray outburst. We discuss possible scenarios to explain the observed results for each γ -ray event.