Solving the Puzzling Kinematics of FSRQ 1928+738

Kunwoo Lee, Jongho Park, Sascha Trippe
Seoul National University, Republic of Korea
kunwoo@astro.snu.ac.kr

Abstract

Here we present the preliminary results of ≈ 1.5 year monitoring of the quasar $1928+738$ with KaVA at 43 GHz . We found increasing apparent velocities from 1.37 c to 5.55 c and varying position angles from 79.4 degree to 70.6 degree as function of distance from the black hole. We attribute its unusual kinematics to a combination of bulk acceleration and jet bending towards our line of sight.

Backgrounds

$>$ Basic information of FSRQ $1928+738(4 \mathrm{C}+73.18)$
$\checkmark \mathrm{z} \sim 0.3$
\checkmark Relativistic jet motion (e.g. Lister +2013)
\checkmark Jet viewing angle $\theta \sim 13^{\circ}$ (e.g. Hovatta +2009)
> Flat Spectrum Radio Quasar (FSRQ)
\checkmark The jet direction is closely aligned to our line of sight
\checkmark High accretion rate
$>$ Relativistic jet motion towards our line of sight
\checkmark Doppler boosting The time frame shrinks by δ \& The observed flux is boosted by δ^{3}
\checkmark Superluminal motion
: Apparent velocity can exceed the light speed

$$
\delta=\frac{1}{\Gamma(1-\beta \cos \theta)}
$$

$$
\beta_{a p p}=\frac{\beta \sin \theta}{1-\beta \cos \theta}
$$

KaVA Monitoring

$>$ Separation \& Position Angle (PA) from the core
\checkmark Polar coordinates, instead of RA \& Dec
\checkmark Explained well by linear analysis
\checkmark The wide range of PA : free movement inside the jet
\rightarrow Related to the jet width

$>$ KaVA monitoring at 43 GHz
\checkmark for ≈ 1.5 years (16 epochs)
\checkmark monitoring is still on going (in 2018B)
\checkmark Core and Knots A~D
are noted with different colors

$>$ Angular size (s) and Light curve
\checkmark Deriving the Doppler factors

- $\delta=s D_{L} /\left[(1+z) c \times \tau_{\text {cool }}\right]$ (by Jorstad $+05,17$)
- Assumption : Radiative cooling is dominant (valid for 43 GHz)

Jet Kinematics

$>\beta_{\text {app }}$ increases as a function of distance
\checkmark from 1.37 c to 5.55 c
\checkmark Consistent with archival study
$>\delta$ also increases as a
function of distance
\checkmark from 3.53 to 18.42
\checkmark New finding!
\checkmark Also puzzling
$>$ Coupled $\beta_{\text {app }} \& \delta$
\Leftrightarrow Coupled $\theta \& \Gamma$ (convertible)!
\checkmark Jet viewing angle θ
\checkmark Lorentz factor Γ
\checkmark A key to solve its puzzling kinematics
$>\Gamma$ increases as a function of distance
$>\theta$ decreases as a function of distance

$\checkmark 1^{\text {st }}$ Solution

$\checkmark 2^{\text {nd }}$ solution

- Bulk acceleration of the jet!

Discussion

$>$ Deriving the half opening angle $\theta_{o p}$
$\checkmark s_{l}=R$ (separation from core)
$\checkmark s_{t}=\mathrm{R} \times \sin (|\overline{P A}-P A|)+r$
\rightarrow projected $\theta_{o p} \&$ using viewing angle θ
\rightarrow intrinsic $\theta_{o p}$
$>\theta_{o p}$ decreases as a function of distance
\checkmark The jet is being collimated!
\checkmark Acceleration and Collimation are co-spatial!
$>$ Bulk acceleration
$\checkmark \sim 10^{6} r_{s}$ from BH (applying constant $\theta \sim 13^{\circ}$)
$\checkmark \sim 10^{7} r_{s}$ from $B H$ (applying the bending geometry)
$>$ FSRQ $1928+738$ in conclusion
\checkmark Excellent laboratory for studying
Jet acceleration, collimation, and bending !!

References

[^0] Jorstad et al. 2017 ApJ, 846, 98 Kun et al. 2014 MNRAS, 445, 1370

[^0]: Lister et al. 2013 AJ, 146, 120 Hovatta et al. 2009 A\&A, 494, 527 Jorstad et al. 2005 AJ, 130, 1418

