High-mass star formation explored with maser VLBI thermal (ALMA/JVLA) observations

INAF – Osservatorio di Arcetri

Consortium for Very Long Baseline Interferometry in Europe

closest collaborators: Riccardo Cesaroni Ciriaco Goddi Alberto Sanna HM SF Open Problems and Talk Outline Low-mass (~1 M_{$_{o}$}) SF: disk-jets well characterized by observations. In high-mass (> 8 M_{$_{o}$}), from (mainly ALMA / JVLA) Observations: B-type YSOs with disks. Few (claims of) disks towards O-type YSOs A few thermal jets towards high-mass YSOs (VLA, rms ~ 0.3 mJy)

G16.59-0.05: one of the few observed disk-jet systems in HMYSO.

HM SF Open Problems and Talk Outline Low-mass (~1 M_{\odot}) SF: disk-jets well characterized by observations.

- In high-mass (> 8 M_), from (mainly ALMA / JVLA) Observations:
- B-type YSOs with disks. Few (claims of) disks towards O-type YSOs A few thermal jets towards high-mass YSOs (VLA, rms ~ 0.3 mJy)
- G16.59-0.05: one of the few observed disk-jet systems in HMYSO.
- Peculiar for high-mass SF:
- Impact of radiation pressure and photoionization (thermal pressure from ionized gas) on the accretion/ejection.
- The onset of the ionization: hyper-compact (HC) HII region.

The HC HII region inside core A1 in the SFR G24.78+0.08.

gray scale: 6 GHz 13 GHz 22 GHz

Sanna et al. (2010)

Moscadelli et al. (2016)

Sanna et al. (2010)

Moscadelli et al. (2016)

Sanna et al. (2010)

Moscadelli et al. (2016)

18^h21^m09^s15 RA (J2000)

The disk-jet around the high-mass YSO G16.59-0.05 grey scale/black contours: JVLA 22 / 13 GHz continuum

- : JVLA 1.3 cm ;
- i meth. maser ;
- ▲ : water maser

ALMA @ 1.3mm: H30α channel maps towards core A1

ALMA @ 1.3mm: H30 α Vel. Grad. towards A1N HCHII

Expansion of the HC HII region G24.78+0.08

CONCLUSIONS

 Presently, the most detailed view of a high-mass (embedded) YSO can be obtained combining JVLA + ALMA (continuum / line, 0.05"-10") thermal data with multi-epoch VLBI (milli-arcsec) maser observations.

CONCLUSIONS

Presently, the most detailed view of a high-mass (embedded) YSO can be obtained combining JVLA + ALMA (continuum / line, 0.05"-10") thermal data with multi-epoch VLBI (milli-arcsec) maser observations.

2) The sub-arcsecond angular resolution and high sensitivity of the new-generation cm & mm interferometers provide us with kinematics and physical conditions of the maser environment on larger scales.

CONCLUSIONS

Presently, the most detailed view of a high-mass (embedded) YSO can be obtained combining JVLA + ALMA (continuum / line, 0.05"-10") thermal data with multi-epoch VLBI (milli-arcsec) maser observations.

2) The sub-arcsecond angular resolution and high sensitivity of the new-generation cm & mm interferometers provide us with kinematics and physical conditions of the maser environment on larger scales.

3) Masers are unique tools for 3-D velocities at ~100 au from the YSO:
a) resolving ambiguities in the interpretation of the l.o.s. velocity pattern.
b) proper comparison with (ad-hoc) models of massive (proto)stars.

Thanks for your attention !

Source	T(K)	M (M $_{\odot}$)
В	131 ± 11	1.6 ± 0.3
A1	111 ± 18	4.4 ± 1.3
A2	106 ± 16	1.2 ± 0.4
A3	42 ± 7	3.2 ± 1.1

Expansion of the HC HII region G24.78+0.08

Momentum-driven:
$$\rho_{mol}V_{sh}^2 \approx \rho_{ion}V_{ion}^2$$

 $V_{sh} \approx V_{wat.mas.} \approx 40 \text{ km s}^{-1}$
 $n_{ion} \sim 3 \ 10^5 \text{ cm}^{-3}$ $n_{mol} > 10^7 \text{ cm}^{-3}$
 $\implies \text{ sky-plane } V_{ion} > 200 \text{ km s}^{-1}$

maximum $V_{los} \approx 30 \text{ km s}^{-1} \longrightarrow i_{sky} \leq 10^{\circ}$ proper motion PA: $0^{\circ} - 90^{\circ} \longrightarrow \theta \approx 45^{\circ}$

Water Maser Shell

Kinematic Status: $R_0 \approx 500 \text{ AU}$, $V_0 \approx 40 \text{ km s}^{-1}$

Maser Action \rightarrow pre-shock n_H > 10⁶ cm⁻³

Wind-driven shell

For a ZAMS 09.5 type:

 $M_{w} \sim 10^{-6} M_{\odot} yr^{-1}$, $V_{w} \sim 2000 km s^{-1}$, $L_{w} \sim 1-5 10^{36} erg s^{-1}$

pressure and momentum-driven solutions require:

 $t_{0} \approx 40 \text{ yr}$, $n_{\mu} \sim 10^{7} \text{ cm}^{-3}$

radio appearance similar to an UCHII region

Expansion of the HC HII region G24.78+0.08

Fit of the radio continuum towards core A1

FREE-FREE EMISSION: ZAMS SPECTRAL TYPE 09.5, M \approx 20M

