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Probability Theory for Scientific Inference

Most scientific questions fall under the category of inverse problems, in which one is required to
infer causes from data in the face of incomplete information.

No unique solution exists and so additional constraints must be imposed (i.e. regularisation) to
select the most plausible cause that explains the data.

This can be achieved by introducing any available prior information about the problem while
drawing inferences.

Probability theory provides a mathematically consistent way of doing this by using Bayes’ theorem
to update one’s beliefs about propositions as more information becomes available.
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Bayes’ Theorem

Probability is interpreted as the degree of belief in a proposition:

P(A|B, I) = P(A|I)P(B|A, I)
P(B|I)

Two levels of inference:

1. Parameter estimation: Assume that a model/hypothesis is true and estimate its
parameters.

2. Model Selection: Determine the relative probabilities of alternative hypotheses given the
data (i.e. visibilities).
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Why visibilities?

Statistical visibility analysis complements and, if applied judiciously, can improve on traditional
imaging and deconvolution.

• Measurements are made in the visibility domain.
• Imaging is difficult

• for interferometers with sparse uv-coverage.
• when the instrumental calibration is poor.

• Biased parameter and inadequate uncertainty estimates.
• Estimating errors

• Visibility measurements are mostly independent and Gaussian.
• Fourier transform correlates systematic errors that are localised in the uv-domain.

• An image is one possible realisation out of many.
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Software Used

• meqsilhouette (Blecher et al., 2017) for generating synthetic EHT data.
• Now in version v0.7 (not public yet).
• Tropospheric corruptions.
• Bandpass effects and other gains.
• Full Stokes, time-variable-sky simulations.

• montblanc, a GPU-implementation of the RIME, to facilitate fast model computation
(Perkins et al., 2015).

• Implemented in Python with a numpy-like API.
• Available at https://github.com/ska-sa/montblanc.

• multinest (Feroz & Hobson, 2008), and, more recently, polychord (Handley et al.,
2015), for computing the posteriors and the Bayesian evidence.

• User-written functions for prior and likelihood computation.
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Fringe-fitting in VLBI

The stations participating in a VLBI observation are typically located hundreds of kilometres
apart.

The atmospheric conditions at the individual stations are different, leading to different propaga-
tion delays that are uncorrelated (Thompson et al., 2017, Chapter 9).

These errors, if not corrected for, may decohere the signal completely in the worst case or reduce
the coherence time, resulting in a net loss of amplitude (Schwab & Cotton, 1983).

Many subtle effects such as the atmosphere, errors in antenna and source positions are accounted
for by the correlator model.

The residual variation in phases with respect to time and frequency, the rates and the delays
respectively, along with constant phase offsets, are corrected using fringe-fitting.
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Fringe-fitting in VLBI

Interferometer phase error, to a first order (Cotton, 1995):

∆ϕt,ν = ϕ0 +

(
∂ϕ

∂ν
∆ν +

∂ϕ

∂t ∆t
)
,

where ϕ0 is the phase error at the reference time and frequency, ∂ϕ
∂ν is the delay residual, and

∂ϕ
∂t , the rate residual.

Simultaneously incorporate source structure in the models.

Here, we compare our method with the fringe-fitting tasks in casa and aips on synthetic EHT
observations of the following sky models:

• Central Gaussian source (GAU).
• Central dominant point source with a secondary point source away from the phase centre

(2PT).
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The RIME Used for the Inference

Accounting for the phase offsets and delays, the RIME used for the likelihood computation
becomes

Vpq = Gp Xpq GH
q +N (0, σ2

pq)

where Gp are the Jones matrices given by

Gp = ei[ψp+τp(νn−νref)]

(
1 0
0 1

)

Xpq is the source coherency matrix, and
N (0, σ2

pq) is the additive noise per vis., with σpq given by the radiometer equation

σpq =

√
SEFDp x SEFDq√

2δν τ

where δν is the bandwidth and τ is the integration time.
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Event Horizon Telescope (EHT)

The EHT is a network of mm/sub-mm facilities spread across continents to create a telescope
with high angular resolution (≃ 30− 10µas, operating at frequencies 230− 345 GHz), with the
longest baselines spanning the Earth’s diameter (Doeleman et al. (2009)).
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Synthetic EHT Observations (GAU)

Details of the simulations:
• 0 to 20 µas central Gaussian sources (lp,

mp, emin/emaj).
• 3 minute snapshot observations.
• 2 second integration time.
• 230 GHz frequency.
• 32 channels of 80 MHz each (2.56 GHz

bandwidth).
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Synthetic EHT Observations (GAU)

Details of the simulations:
• SEFD-derived Gaussian thermal noise.
• Delays constant in time (3 min “solint”).
• No tropospheric turbulence.
• Comparison with fringefit (casa) and

fring (aips).
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Bayesian Inference

Uniform priors for the source parameters and delays.

Bayesian model selection between GAU and PT (a point source model) performed on each
dataset (from 0 to 20 µas sources).

GAU was preferred in each Gaussian case with accurate estimates of the source size and instru-
mental delays.

Compared the posterior distributions with the estimates returned by fringefit (casa) and
fring (aips).
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Bayesian Inference - Posteriors for 20 µas GAU Source

Main diagonal: 1-D posteriors
Lower triangle: 2-D correlations
Vertical green lines: simulated values
Parameters plotted:

• Flux Density, Sν
• Major axis of Gaussian, emaj

• Minor axis of Gaussian, emin

• Delays, τp
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Comparison of Delay Estimates with CASA (GAU)

casa estimates of delays
• Red: Point source model.
• Blue: Perfect source model.
• Green: True values.
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Deriving Uncertainties for CASA Estimates (GAU)

200 simulations of the 20 µas source with the same noise properties N (µ, σ) but different noise
realisations, with and without incorporating the true sky model.
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Comparison with AIPS Task FRING (performed by Ilse van Bemmel)
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Synthetic EHT Observations (2PT)

Details of the simulations:
• Central dominant point source (1 Jy).
• 10 datasets with the secondary point

source (0.3 Jy) located at distances of 10
to 100 µas in DEC, in steps of 10 µas.

• 3 minute snapshot observations.
• 2 second integration time.
• 230 GHz frequency.
• 32 channels of 80 MHz each (2.56 GHz

bandwidth).
• SEFD-derived Gaussian thermal noise.
• Delays constant in time (3 min “solint”).
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Bayesian Inference - Posteriors for 2PT separated by 100 µas

Main diagonal: 1-D posteriors
Lower triangle: 2-D correlations
Vertical green lines: simulated values
Parameters plotted:

• Flux Densities: Sν1 and Sν2

• Position of secondary source:
(l2,m2)

• Delays, τp
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Comparison of Delay Estimates with CASA (2PT)

200 simulations with the same noise properties N (µ, σ) but different noise realisations, with and
without incorporating the true sky model.
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Discussion

fringefit and fring results coincide with the posterior distributions of the parameters when
the source model is incorporated during fringe-fitting.

With the point source assumption, the casa estimates have a larger spread and/or differ from
the actual delays by a few picoseconds.

For wideband observations at high frequencies, with more complex source models, we may
expect these differences to become more significant (need to be sure not to “burn in” these
discrepancies).

The Bayesian estimates provide tight constraints on the posteriors, while also estimating the
source parameters simultaneously (in real observations, other considerations such as accuracy of
gain calibration come into play (Natarajan et al., 2017)).

Applicable to problems in astrometry and geodesy.
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Simulations for Astrometry (with Huib Jan van Langevelde)

Details of the simulation:
• 7 EVN stations.
• Offset point source (∼ 1000 mas from

centre).
• 10 s integration time (4 hours total obs

time).
• Frequency of 6.7 GHz.
• Single channel of 20 kHz.
• SEFD-derived thermal noise.
• Station-based phase offsets.
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Posterior Distributions

Main diagonal: 1-D posteriors
Lower triangle: 2-D correlations
Vertical green lines: simulated values
Parameters plotted:

• Flux Density, Sν
• Position, (l,m)
• Phase offsets, ϕp
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Next Steps...

Currently, time-variable delays (and other gain-terms) are handled by analysing solution interval
chunks of data independently.

More complex source structures such as rings and multiple Gaussians need to be accounted for.

multinest can handle only a few tens of parameters (∼ 30) efficiently and execution times
are high for large data sets: ∼ 15-20 hours to estimate 30 parameters for 12000 2 × 2 complex
visibilities with a Tesla K40 GPU (2880 CUDA cores).

polychord looks promising for higher-dimensional models; some of the aforementioned tests
were repeated using polychord (with MPI parallelisation), which brought down the execution
time down to 30 minutes to 2 hours, depending on the required accuracy.

Newer version of montblanc (under testing) can distribute model computation between mul-
tiple GPUs.
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Questions?
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