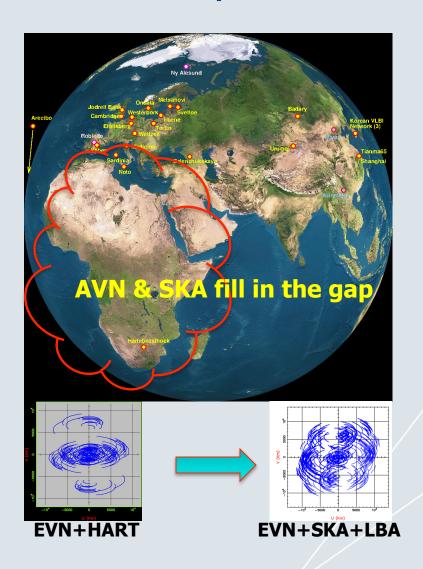

SKA-VLBI Key Science Programmes

Zsolt Paragi JIVE


Why VLBI with the SKA?

Why is SKA-VLBI important?

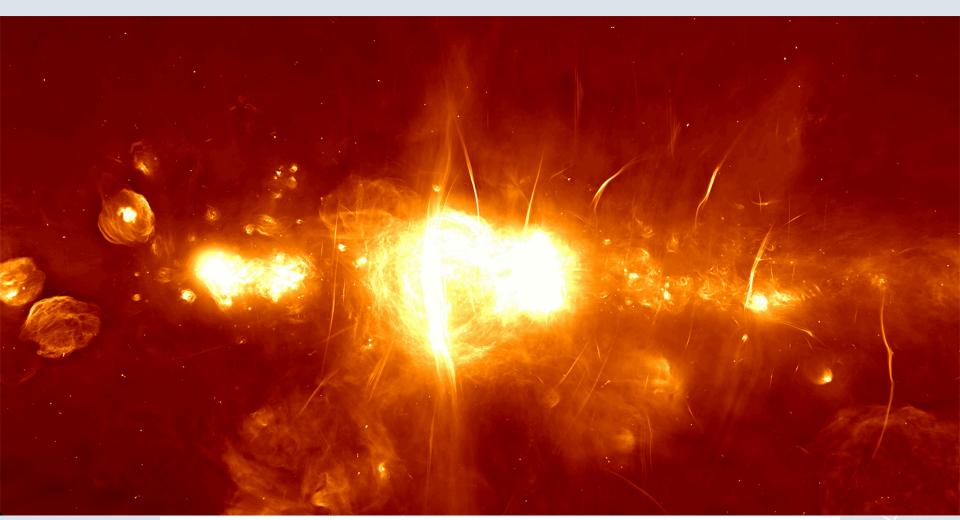
Improved imaging capability

- GC region of high interest
- Denser sampling of the "u-v" plane

Boost in sensitivity

- VLBI Survey of sub-mJy source population (fields of interest)
- Individual sources in the μ Jy regime

Improved Calibration


- Make use of SKA superior amplitude and polarization calibration
- Multiple beams for VLBI phase calibration over the target region

"Very Long Baseline Interferometry with the SKA", Paragi et al. 2015, SKA Science book

SKA1 will change radio astronomy

- > First publicly released MeerKAT image
- Part of SKA1-MID is already here!

https://www.ska.ac.za

SKA High Priority Science Objectives

Science			swg		
Goal	SWG	Objective	Rank		
1	CD/EoR	Physics of the early universe IGM - I. Imaging	1/3		
2	CD/EoR	Physics of the early universe IGM - II. Power spectrum	2/3		
3	CD/EoR	Physics of the early universe IGM - III. HI absorption line spectra (21cm forest)	3/3		
4	Pulsars	Reveal pulsar population and MSPs for gravity tests and Gravitational Wave detection	1/3		
5	Pulsars	High precision timing for testing gravity and GW detection	1/3		
6	Pulsars	Characterising the pulsar population	2/3		
7	Pulsars	Finding and using (Millisecond) Pulsars in Globular Clusters and External Galaxies			
8	Pulsars	Finding pulsars in the Galactic Centre	2/3		
9	Pulsars	Astrometric measurements of pulsars to enable improved tests of GR	2/3		
10	Pulsars	Mapping the pulsar beam	3/3		
11	Pulsars	Understanding pulsars and their environments through their interactions	3/3		
12	Pulsars	Mapping the Galactic Structure	3/3		
13	HI	Resolved HI kinematics and morphology of ~10^10 M_sol mass galaxies out to z~0.8	1/5		
14	HI	High spatial resolution studies of the ISM in the nearby Universe.	2/5		
15	HI	Multi-resolution mapping studies of the ISM in our Galaxy	3/5		
16	HI	HI absorption studies out to the highest redshifts.	4/5		
17	HI	The gaseous interface and accretion physics between galaxies and the IGM	5/5		
18	Transients	Solve missing baryon problem at z~2 and determine the Dark Energy Equation of State	=1/4		
19	Transients	Accessing New Physics using Ultra-Luminous Cosmic Explosions	=1/4		
20	Transients	Galaxy growth through measurements of Black Hole accretion, growth and feedback	3/4		
21	Transients	Detect the Electromagnetic Counterparts to Gravitational Wave Events	4/4		
22	Cradle of Life	Map dust grain growth in the terrestrial planet forming zones at a distance of 100 pc	1/5		
23	Cradle of Life	Characterise exo-planet magnetic fields and rotational periods	2/5		
24	Cradle of Life	Survey all nearby (~100 pc) stars for radio emission from technological civilizations.	3/5		
25	Cradle of Life	The detection of pre-biotic molecules in pre-stellar cores at distance of 100 pc.	4/5		
26	Cradle of Life	Mapping of the sub-structure and dynamics of nearby clusters using maser emission.	5/5		
27	Magnetism	The resolved all-Sky characterisation of the interstellar and intergalactic magnetic fields	1/5		
28	Magnetism	Determine origin, maintenance and amplification of magnetic fields at high redshifts - I.	2/5		
29	Magnetism	Detection of polarised emission in Cosmic Web filaments	3/5		
30	Magnetism	Determine origin, maintenance and amplification of magnetic fields at high redshifts - II.	4/5		
31	Magnetism	Intrinsic properties of polarised sources	5/5		
32	Cosmology	Constraints on primordial non-Gaussianity and tests of gravity on super-horizon scales.	1/5		
33	Cosmology	Angular correlation functions to probe non-Gaussianity and the matter dipole	2/5		
34	Cosmology	Map the dark Universe with a completely new kind of weak lensing survey - in the radio.	3/5		
35	Cosmology	Dark energy & GR via power spectrum, BAO, redshift-space distortions and topology.	4/5		
36	Cosmology	Test dark energy & general relativity with fore-runner of the 'billion galaxy' survey.	5/5		
37	Continuum	Measure the Star formation history of the Universe (SFHU) - I. Non-thermal processes	1/8		
38	Continuum	Measure the Star formation history of the Universe (SFHU) - II. Thermal processes	2/8		
39	Continuum	Probe the role of black holes in galaxy evolution - I.	3/8		
40	Continuum	Probe the role of black holes in galaxy evolution - II.	4/8		
41	Continuum	Probe cosmic rays and magnetic fields in ICM and cosmic filaments.	5/8		
42	Continuum	Study the detailed astrophysics of star-formation and accretion processes - I.	6/8		
43	Continuum	Probing dark matter and the high redshift Universe with strong gravitational lensing.	7/8		
44	Continuum	Legacy/Serendipity/Rare.	8/8		

 Science working groups are organized around the HPOs identified by the community

VLBI WG

co-chair: Cormac Reynolds (CSIRO)

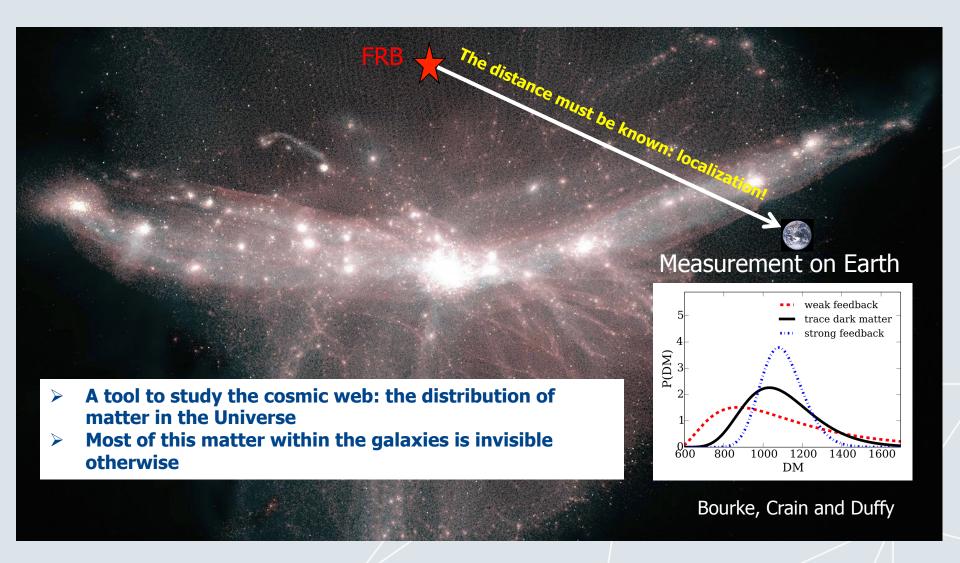
co-chair: Zsolt Paragi (JIVE – till end 2017) co-chair: An Tao (ShAO – since end 2017)

office contact: Evan Keane

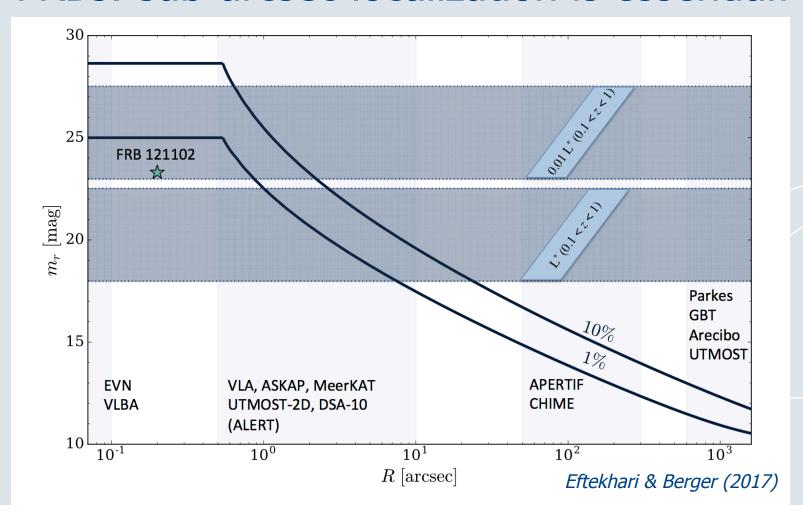
Very high resolution VLBI science is not a single topic, but it is related to several HPOs

https://astronomers.skatelescope.org/scienceworking-groups/

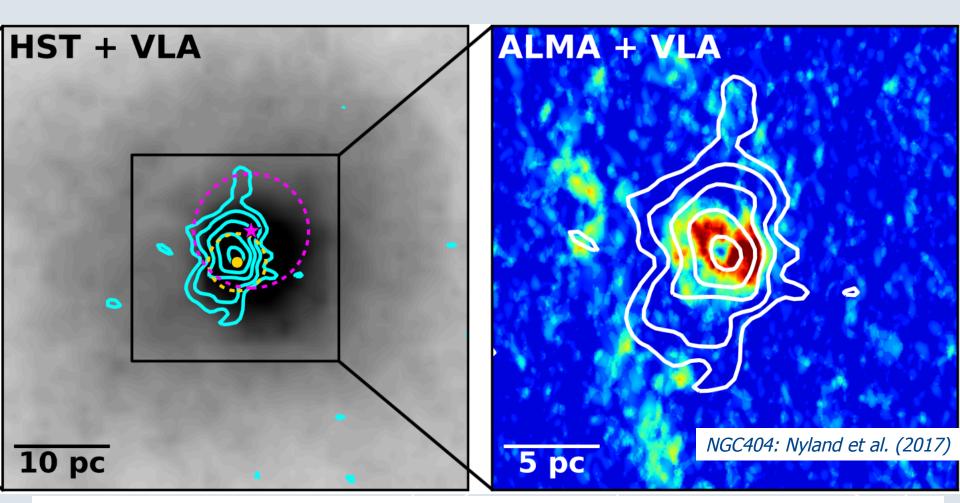
Highest-ranked HPSOs and VLBI


Science Goal	SWG	Objective	SWG Rank	VLBI with:
1	CD/EoR	Physics of the early universe IGM - I. Imaging	1/3	
2	CD/EoR	Physics of the early universe IGM - II. Power spectrum	2/3	
4	Pulsars	Reveal pulsar population and MSPs for gravity tests and Gravitational Wave detection	1/3	
5	Pulsars	High precision timing for testing gravity and GW detection	1/3	LOW/MI
13	HI	Resolved HI kinematics and morphology of ~10^10 M_sol mass galaxies out to z~0.8	1/5	LOW/MII
14	HI	High spatial resolution studies of the ISM in the nearby Universe.	2/5	
15	HI	Multi-resolution mapping studies of the ISM in our Galaxy	3/5	
18	Transients	Solve missing baryon problem at z~2 and determine the Dark Energy Equation of State	=1/4	MID
22	Cradle of Life	Map dust grain growth in the terrestrial planet forming zones at a distance of 100 pc	1/5	MID
27	Magnetism	The resolved all-Sky characterisation of the interstellar and intergalactic magnetic fields	1/5	
32	Cosmology	Constraints on primordial non-Gaussianity and tests of gravity on super-horizon scales.	1/5	,
33	Cosmology	Angular correlation functions to probe non-Gaussianity and the matter dipole	2/5	
37 + 38	Continuum	Star formation history of the Universe (SFHU) – I+II. Non-thermal & Thermal processes	1+2/8	MID

Also note: VLBI science = SKA2 science!


Highlight: Fast Radio Bursts

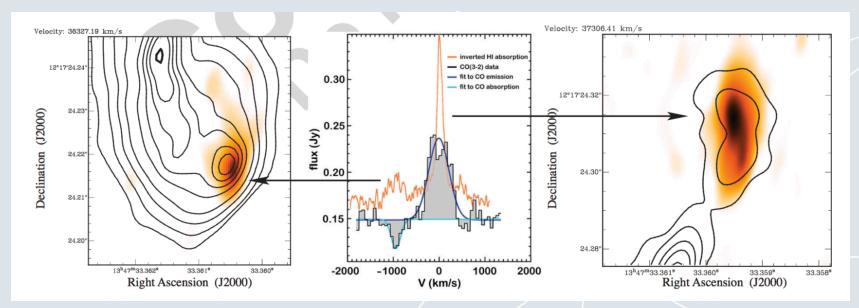
FRBs: sub-arcsec localization is essential!



- > <0.5" localizations are necessary for secure dwarf gx host identifications at z > 0.1
- Progenitor environments (position within host gx) as well as high redshift localizations will require SKA1-MID and VLBI!

Nucelar activity in dwarf galaxies

- > Classic AGN/SF indicators do not (always) work in dwarfs/LLAGN...
 - Requires multi-band approach
 - Requires high frequencies (Band 5) and long baselines for SKA1-MID

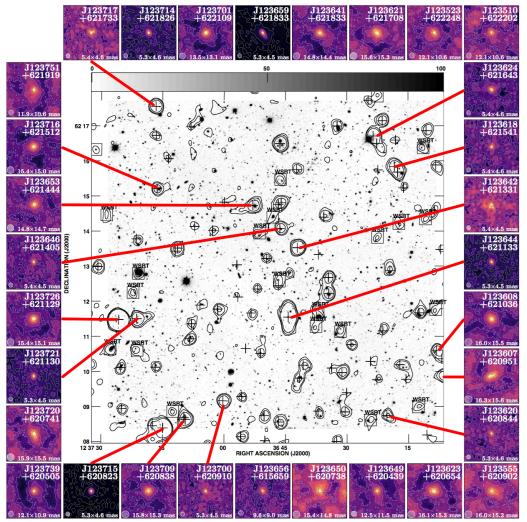

HI VLBI: pushing the limits

 $N_{\rm HI} = 1.8 \times 10^{18} \ T_{\rm spin} \ \tau_{\rm peak} \ FWHM_{\rm line}$ (100 K; 0.02-0.05; 100 km/s)

 \rightarrow few $10^{20} - 10^{21}$ cm⁻²

(4.6×10²¹ cm⁻² in 4C 12.50)

[N_{HT} detection limit using sensitivities of EVN and EVN+FAST or EVN+SKA1-MID]


Young radio source in an ULIRG, 4C12.50 at z=0.1217 Morganti et al., Science, 341, 1082, 2013

- ▶ Need massive increase in collecting area to reach beyond $N_{\rm HI}$ limit of ~10²⁰ cm⁻²
- > Must improve v < 1.2-1.3 GHz coverage to reach beyond $z \sim 0.1-0.2$
- Use e-MERLIN/MeerKAT/SKA1-MID short spacings to map extended outflows

Piggybacking on SKA1-MID surveys?

Radcliffe et al. (2018)

- > Besides HI, continuum surveys will reveal a new population of Jy sources
- What is the best strategy to very high resolution follow-up?

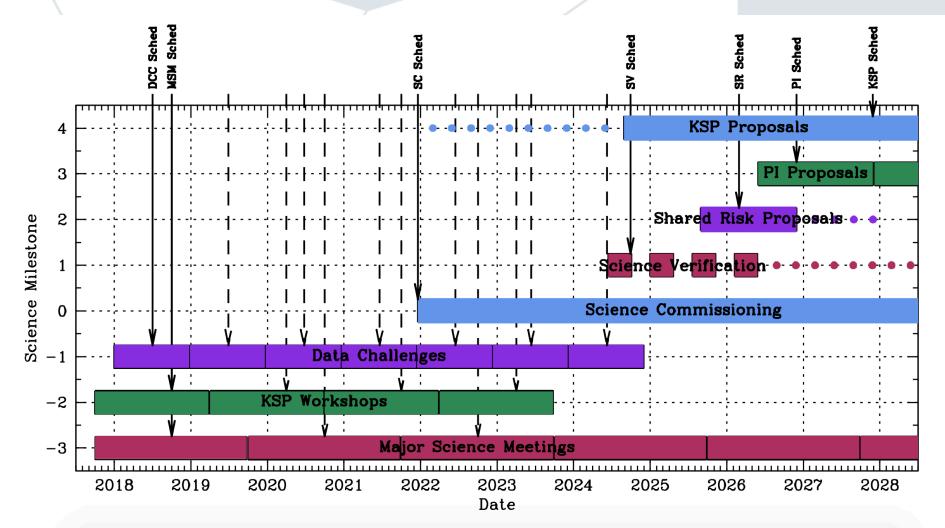
Key Science Projects with SKA1

- > Projects that require 1000+h over a few year
- What fraction of time will be available for VLBI?
- How many hours of support will come from other networks?
- Min. 240h/yr EVN & LBA support should be possible, making it >1000h for 5yr duration (KSP domain, but not per science proposals)

African VLBI Network (AVN) may support even more, but only a few telescopes will be there initially – commensal VLBI?

We need an operational model for SKA-VLBI

- KSPs, GOTs, TOOs, "OOS" (not TOO, but time coordinated with other facilities for multi-band projects), triggered, and commensal observations
- > Will be part of our KSPs absorbed by other groups of the relevant scientific interest?
- What are the outstanding science cases?


Is commensal VLBI possible?

Band	VLBI + coarse Vis	Imaging	PSS	PST	Zoom
Band 1 (0.35-1.	4b full (8 FSP)	Full (4 FSP)	1500b 300MHz (8 FSP)	16b (4 FSP)	2 (2 FSP)
05GHz)	4b 512MHz (6 FSP)	Full (4 FSP)	1500b 300MHz (8 FSP)	16b (4 FSP)	4 (4 FSP)
Band 2 (0.95-1.	4b full (10 FSP)	Full (5 FSP)	1500b 300MHz (8 FSP)	16b 600 MHz (3 FSP)	0
76GHz)	4b 512MHz (6 FSP)	Full (5 FSP)	1500b 300MHz (8 FSP)	16b (5 FSP)	2 (2 FSP)
Band 5a/b	2b 5GHz (26 FSP)	0	0	O	0
(4.6-8.5 GHz & 8.3-15.3	4b 2.5GHz (26 FSP)	0	0	O	0
GHz)	4b 512MHz (6 FSP)	512MHz (3 FSP)	1500b 300MHz (8 FSP)	16b 512 MHz (3 FSP)	6 (6 FSP)

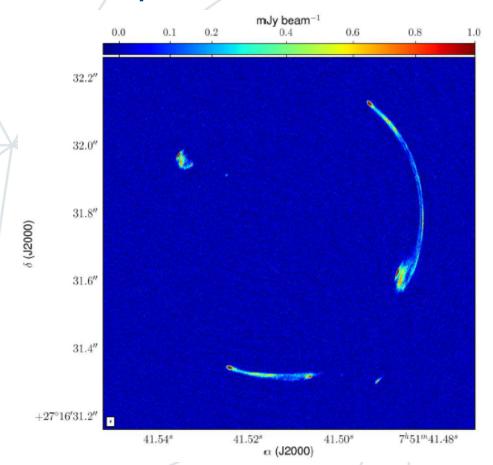
SKA1 Milestones

- Time for brainstorming to start community must self-organize
- Note there are plans for an Early Production Array must do VLBI!

SKA General Science Meeting and Key Science Workshop 2019

VLBI KSP and Operations meeting

- **► Location: SKA HQ, Jodrell Bank, fall 2019**
- > JUMPING JIVE WP10 initiative
- > SOC
 - Antonio Chrysostomou, Zsolt Paragi (conveners)
 - An Tao (ShAO, CN)
 - ... (TBC)
 - Francisco Colomer (JIVE, NL)
 - John Conway (OSO, SE)
 - ... (TBC)
 - Roger Deane (Rhodes, SA)
 - Preeti Kharb (NCRA, IN)
 - Mar Mezcua (ICE, SP)
 - Chris Phillips (CSIRO, AU)
 - ... (TBC)
 - Kazi Rygl (INAF, IT)
 - ... (TBC)
- > LOC
 - Cristina García-Miró
 - ..



End

What will you do to make sure there is a bright future for (SKA-)VLBI in the coming 5-10+ years?

Spingola et al. (2018)

