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VLBI in the Era of  SKA

SKA will have 100-times the collecting area of current telescopes.


⇒ Baselines to SKA will have 10-times the collecting area (√Aska Atel)


SKA Mid and Low will be centred at frequencies around 1000 and 300 
MHz, respectively

⇒ The new science will come at these frequencies


Science targets will be newly discovered compact objects. 

⇒ VLBI will provide _dynamical_ information; the proper-motions, the 
relationship to other parts of the hosts, the distances 

All astrometry — but astrometry at 1GHz and below is very hard
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Astrometric VLBI at low 
Frequencies

Maria Rioja has covered the new methods for low frequency phase 
referencing. The errors arise from the static ionospheric component:

Improvement come from:

Reducing the ionosphere error,

higher frequency, ensuring high Zenith angle,

or reducing the source-calibrator separation.

With dense GPS measurements we may be able to improve from a 
residual of 6TECU to 3TECU.

But this is equivalent to a _metre_ of residual path length (20mm/o)


c.f. 30mm of residual tropospheric path length (0.5mm/o)

for 35μas we require ~1mm/o error on 6000km baseline


⇒ For significant improvements we need closer calibrators.
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Astrometric VLBI at low 
Frequencies

Maria Rioja has covered the new methods for low frequency phase 
referencing. The errors arise from the static ionospheric component:

Improvement come from:

Reducing the ionosphere error,

higher frequency, ensuring high Zenith angle,

or reducing the source-calibrator separation.

With dense GPS measurements we may be able to improve from a 
residual of 6TECU to 3TECU.

But this is equivalent to a _metre_ of residual path length (20mm/o)


c.f. 30mm of residual tropospheric path length (0.5mm/o)

for 35μas we require ~1mm/o error on 6000km baseline


⇒ For significant improvements we need closer calibrators.

Units: differential ΔTEC normalised per degree

converted to mm delay per degree
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Population Estimates
In-beam Phase Referencing addresses this directly:


  e.g. PSR-π, which has typical separations of 0.2 degrees,


  Possible for L-band, as usually find sources with-in VLBA beam;


  PSR-π, 60 out of 70 sources had in-beams — high success rate 


Rare for other frequencies as primary beam are smaller …
Nevertheless for significant improvements we need even closer 
calibrators 

SKA-VLBI will be an order of magnitude more sensitive: 

so we are looking for a calibrator order of magnitude closer, 
searching an area two orders of magnitude smaller: 


arvix-1808.09046

σglobal j ∼ 30 − 80μJy : N ∼ 102/o = 1 per 6′�

Godfrey SKA Memo 135

σthermal
∼ 10 − 1μas

⇒ σepoch ∼ 100 μas

N ∝ S−0.9 ∼ 8
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~1E3-1E4

Population Estimates
In-beam Phase Referencing addresses this directly:


  e.g. PSR-π, which has typical separations of 0.2 degrees,


  Possible for L-band, as usually find sources with-in VLBA beam;


  PSR-π, 60 out of 70 sources had in-beams — high success rate 


Rare for other frequencies as primary beam are smaller …
Nevertheless for significant improvements we need even closer 
calibrators 

SKA-VLBI will be an order of magnitude more sensitive: 

so we are looking for a calibrator order of magnitude closer, 
searching an area two orders of magnitude smaller: 


arvix-1808.09046

σglobal j ∼ 30 − 80μJy : N ∼ 102/o = 1 per 6′�

Godfrey SKA Memo 135Well short of required 1 per 1’

σthermal
∼ 10 − 1μas

⇒ σepoch ∼ 100 μas

N ∝ S−0.9 ∼ 8

DR ~100

matched thermal 
& systematics
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Multi-View Review

Maria Rioja has covered this, yesterday .. so I will summarise:


• Use Multiple Simultaneous Beams around the target. 


• Fit a planar surface for each antenna.


• Solve for Ionospheric screen, at the line of sight of the target.

All error terms will be zero (static/dynamic, tropo-/ionosphere)

Perfect phase-referencing


Demonstrated in Rioja ’16 (visibility-based) & Reid ’17 (image-based)

    Used in Immer etal. 2018, Sakai etal. in-prep (virtual quasar)

         solves for Static Ionospheric Wedge over array

⇒ Δθ = 0
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How many Beams needed?

These are the crucial design question for SKA-VLBI:


• How many beams are needed?

              Is it a function of frequency?


• Can we assume that the phase surface is flat?


• Would more beams allow fitting a curved surface?


• Would more beams allow contemporaneous checks on 
calibrators?


• Would more beams allow new science goals?
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MWA - RTS System

Dan Mitchell (Mitch) designed the Real Time System for EOR studies with 
Murchison Widefield Array (MWA). Chris Jordan used this to characterise 
MWA Phase-1 (3km baselines) ionospheric behaviour:

Image-shift measurement for all visible sources, every 8-sec 


Has been used to classify types of weather:

 weak (1), moderately correlated (2),

 highly correlated but weak (3), highly correlated and strong (4)

We used these measurements to derive the change in gradient w. angle 

source shifts 

⇒ ΔTEC(t, Δ ⃗l)

∝

∝ ΔTEC/o

Jordan etal. 2017, MNRAS
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MWA - RTS System

Dan Mitchell (Mitch) designed the Real Time System for EOR studies with 
Murchison Widefield Array (MWA). Chris Jordan used this to characterise 
MWA Phase-1 (3km baselines) ionospheric behaviour:

Image-shift measurement for all visible sources, every 8-sec 


Has been used to classify types of weather:

 weak (1), moderately correlated (2),

 highly correlated but weak (3), highly correlated and strong (4)

We used these measurements to derive the change in gradient w. angle 

source shifts 

⇒ ΔTEC(t, Δ ⃗l)

∝

∝ ΔTEC/o

Type 2: coherent source shifts 
across FoV

Differential shifts
1D differential shifts

Jordan etal. 2017, MNRAS

=curved smooth 
surface NE-SW
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MWA - RTS System

In most cases (0.02dTEC/o) 
residual path at 1.5GHz is 
~4mm for calibrators at 1o 


⇒ 100μas

Type 1:

`Flat’ across large ang. sep.

Type 4:

Rises strongly to ~ 1o sep.

Type 2:

Rises continuously

Type 3:

Rises strongly to ~ 5o sep.

whereas, for BeSSeL-South (@6.7GHz)

MV Calibrators with 3o  sep. would be 
acceptable in all weathers (0.05*3*400*6.7^-2)


(0.02*1*400*1.5^-2)
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MultiView

Will match in-beam at L-band with ~1o cals


Will exceed in-beam above L-band
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LEAP: Actual Phase Screens
MWA had no direction dependent calibration scheme; 

The initial assumption was that the DI would be sufficient. 


This was not ….  so image-based, rubber-sheet, corrections were 
implemented. Similar to the field-based calibration (Cotton etal `99)

    But these apply an array-wide linear shift per (snapshot) image. 


LEAP (Low-frequency Excision of Atmosphere in Parallel) (Rioja etal `17) 
provides a station-based direction dependent visibility correction. 


From this extracted a fine-scale (10-3000m) phase measurement across 
the array; probing the ionosphere to discover flatness of phase screens 
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LEAP: Actual Phase Screens
MWA had no direction dependent calibration scheme; 

The initial assumption was that the DI would be sufficient. 


This was not ….  so image-based, rubber-sheet, corrections were 
implemented. Similar to the field-based calibration (Cotton etal `99)

    But these apply an array-wide linear shift per (snapshot) image. 


LEAP (Low-frequency Excision of Atmosphere in Parallel) (Rioja etal `17) 
provides a station-based direction dependent visibility correction. 


From this extracted a fine-scale (10-3000m) phase measurement across 
the array; probing the ionosphere to discover flatness of phase screens 

MWA-1 DD effect 
typical case

MWA-2 phase surface 
worst case

LEAP Results are for SMALL SCALE <1o structure

tied-array beam (WRST &| SKA) to SD antenna
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LEAP: Actual Phase Screens
MWA Phase-2 (6km baselines) shows much more `interesting’ behaviour

Could be the longer baselines, but also different point in solar-cycle.


Phase slopes across array ~ ±60o — at 150MHz

Matching RTS image shifts.


Residual Phase Noise after linear fit (non-thermal) ~ 4o — at 150MHz

<

Would allow calibrators to be anywhere across FoV (30–60’)

Would allow >1:1000 astrometry at 1.5GHz (<10μas) 


10% of phase screens show significant curvature 

(>10% change w higher order) 


— but linear approx often acceptable

Many showed fast (~10sec) changes in phase surface

1milli-TECU, or 0.1mm
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MWA Phase-2 (6km baselines) shows much more `interesting’ behaviour

Could be the longer baselines, but also different point in solar-cycle.


Phase slopes across array ~ ±60o — at 150MHz

Matching RTS image shifts.


Residual Phase Noise after linear fit (non-thermal) ~ 4o — at 150MHz

<

Would allow calibrators to be anywhere across FoV (30–60’)

Would allow >1:1000 astrometry at 1.5GHz (<10μas) 


10% of phase screens show significant curvature 

(>10% change w higher order) 


— but linear approx often acceptable

Many showed fast (~10sec) changes in phase surface

1milli-TECU, or 0.1mm

require > 3 cals.

require stronger 
& in-beam cals.
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• Can we assume that the phase surface is flat?

For angular sep < 0.5o                              > 1o 

of an acceptable level for 4 μas/epoch     100 μas/ep.


• Would more beams allow fitting a curved surface & 
contemporaneous checks?

Of course. Latter being more important.


• How many beams are needed?

Minimum is 4 - target plus linear surface

Greatest risk is poor stability in weak calibrators

Multiple (6 or more) calibrators allows curved surfaces and 
internal consistency checks, averaging down of errors


• Would more beams allow new science goals?

100’s of continuum sources should be detectable

Core-SKA to largest single dish would be covered with ~100 

How many Beams needed?
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• Can we assume that the phase surface is flat?

For angular sep < 0.5o                              > 1o 

of an acceptable level for 4 μas/epoch     100 μas/ep.


• Would more beams allow fitting a curved surface & 
contemporaneous checks?

Of course. Latter being more important.


• How many beams are needed?

Minimum is 4 - target plus linear surface

Greatest risk is poor stability in weak calibrators

Multiple (6 or more) calibrators allows curved surfaces and 
internal consistency checks, averaging down of errors


• Would more beams allow new science goals?

100’s of continuum sources should be detectable

Core-SKA to largest single dish would be covered with ~100 

How many Beams needed?
at L-band. High freq. better. 

Perfect for BeSSeL

40 μas/ep.

Goal should be 1 μas/epoch

Issue is cost

i.e. the budget?
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• Astrometric requirements key driver for SKA-VLBI


• MWA measurements of SKA site phase screens

show: range of ionospheric behaviours and classes

suggest: acceptably linear over SKA-core 

implies: excellent performance of in-beam MultiView


• Suggested number of beams:

6 (minimum), 10 (lower goal) & 100 (maximum goal)


Lower will lower systematic contributions to parallax to μas level

Upper will allow deep phase referenced observations of every 
source in beam

Conclusions
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