The global EVN view of the radio counterpart of GW170817

Giancarlo Ghirlanda
INAF – Osservatorio Astronomico di Brera
University Milano Bicocca

(Re)solving the jet/cocoon riddle of the first gravitational wave electromagnetic counterpart

arXiv:18081.00469

14th European VLBI Network Symposium and Users Meeting _ 8-11/10/2018 _ Granada/ES
If GW/GRB 170817 had a standard jet ($\theta_{\text{jet}} \sim 10 \text{ deg}$)

$$P(< \theta_{\text{jet}} = 10^\circ) = 1.5\%$$

Alternatives

- Ultrarelativistic ($\Gamma \sim 100$) jet OFF-AXIS
- Mildly relativistic ($\Gamma \sim 7$) isotropic outflow
- Isotropic blast wave

Solve the probability issue
Account for the low luminosity
Debeaming

Peak position:
- Dynamics,
- Geometry
- Orientation

If GW/GRB 170817 had a standard jet ($\theta_{\text{jet}} \sim 10 \text{ deg}$)
Alternatives + Modifications

- Isotropic blast wave
- Off-axis jet
- Solve the probability issue
- Account for the low luminosity
- Shallow rise phase as $t^{0.8}$

$\Gamma_1 < \Gamma_2 < \Gamma_3$
$E_1 > E_2 > E_3$

$G_1 > G_2 > G_3$
$E_1 > E_2 > E_3$

Mooley+2018; Nakar+2018; Troja+2018; Margutti+2018; Xie+2018; D’Avanzo+2018; …

The first 20 days

One year of (mostly radio) observations
Origin of structure

Isotropic blast wave

Off-axis jet

Solve the probability issue

Account for the low luminosity

Shallow rise phase as $t^{0.8}$

$G_1 < G_2 < G_3$

$E_1 > E_2 > E_3$

Choked jet (not successful)

Structured Jet (successful)

$E_{\text{jet}} < E_{\text{ejecta}}$

In both cases the radial or angular structure may be due to the interaction of the jet head with the merger ejecta

Perego+2017

Bromberg+2011

Kilonova ejecta

Jet’s head & contact discontinuity

Contact discontinuity

remnant disk

Jet

Outer Cocoon

Inner Cocoon

Kilonova ejecta
$E(\Gamma \beta) = E_0 (\Gamma \beta)^{-\alpha}$

$E_0 = 1.5 \times 10^{52} \text{ erg}$

$\alpha = 6$

$\Gamma_{\text{max}} = 6$

$\Theta = 30, 45, 60 \text{ deg}$

$p = 2.15; \varepsilon_e = 0.1; \varepsilon_B = 10^{-4}$

$E_{\text{core}} = 2.5 \times 10^{52} \text{ erg}; s_1 = 5.5$

$\Gamma_c = 250; s_2 = 3.5; \vartheta_{\text{core}} = 3.4 \text{ deg}$

$n_{\text{ism}} = 4 \times 10^{-4} \text{ cm}^{-3}; \vartheta_{\text{view}} = 15 \text{ deg}$

$E_{K, \text{iso}}(\theta) = \frac{E_{\text{core}}}{1 - (\theta/\theta_{\text{core}})^{s_1}}$

$\Gamma(\theta) = 1 + \frac{\Gamma_{\text{core}} - 1}{1 + (\theta/\theta_{\text{core}})^{s_2}}$
Contribute:
1) Magnetic field configuration
 (randomness & compression)
2) Γ
3) Geometry (θ_{jet}; θ_{view}
4) Emission mechanism

$\Pi < 12\% \ (90\%)$

Still compatible with a structured jet with B component perp. shock
Structured jet has larger displacement and smaller size than cocoon
Imaging

Global-VLBI EVN project (GG084) + eMERLIN (CY6213) {EVN (RG009)}

12-13 March 2018 = 204.7 days @ 5 GHz (32 ant. but VLA)

8 μJy/beam rms

Peak brightness 42 ± 8 μJy/beam [cnst. interpolating closest JVLA F=47±9 μJy]

8-22 March (12 runs) eMERLIN

F_p < 60 μJy/beam

beam = 3.5x1.5 mas; PA=-6 deg

S = 2.9 mas (1DGaussian fit but F=93 μJy)

S = 1.3±0.6 mas (2DGaussian fit with F=47 μJy)
Imaging

Structured jet model

Cocoon (30 deg)

Cocoon (45 deg)
Bayesian approach (MonteCarlo implementation)

\[
P(\sigma_x, \sigma_y, F|F_p) = \frac{P(F_p|\sigma_x, \sigma_y, F)P(F)P(\sigma_x, \sigma_y)}{P(F_p)} = \int \frac{P(F_p|\sigma_x, \sigma_y, F)P(F)P(\sigma_x, \sigma_y)}{P(F_p)} dF
\]

Probability of excluding a size \((\sigma_x, \sigma_y)\) given that we measure a peak brightness of \(42\pm8\ \mu\text{Jy/beam}\)

Size (Bayesian) test → Structured Jet P=70%
Imaging

(II) apparent motion [Mooley+2018]

VLBA + VLA + GBT: 2/4 epochs (Sept 2017 – Apr. 2018, L,S,C,C) @ <75d> and <230d> (4.5 GHz)

230 days

75 days

HSA

EVN

2.7 ± 0.3 mas
At least 10% of BNS launch a jet that successfully breaks out of the merger ejecta.
Conclusions

GW/GRB170817: did a relativistic narrow jet or a cocoon produce the (non-thermal) long lived afterglow emission?

Multi-wavelength modeling of $L(t)$ (10-240 days) cannot tell apart the two scenarios.

High resolution radio observations:

- Imaging:
 1. Size < 3 mas (95%) @ 204.7 days (EVN global VLBI)
 2. Proper motion 2.7 mas @ 75-230 days (HSA)

At least 10% of BNS might produce a jet that breaks out of the polar ejecta. Jet structure due to interaction with merger ejecta.

Thank you EVN!

This presentation has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730562 [RadioNet].