The localization of a repeating Fast Radio Burst

Benito Marcote Joint Institute for VLBI ERIC (JIVE, The Netherlands)

Joint Institute for VLBI ERIC

EVN Symposium – 8 Oct 2018

(Artwork: Danielle Futselaar)

Introduction

Fast Radio Bursts

Possible origins

The only repeater, FRB 121102

The first and only precise localization of a FRB

Persistent counterparts

Discussion & Conclusions

Summary from FRB 121102

The future for Fast Radio Bursts

Introduction

Introduction: What is a Fast Radio Burst?

- Fast and strong radio flashes
- Duration of a few milliseconds
- Bright: \sim 0.1–1 Jy
- Detected at radio freq. ($\sim 1 \text{ GHz}$)
- Discovered by Lorimer et al. (2007)
- Origin: unknown

Introduction: What is a Fast Radio Burst?

Event	Telescope	gl [deg]	gb [deg]
FRB010125	parkes	356.641	-20.020
FRB010621	parkes	25.433	-4.003
FRB010724	parkes	300.653	-41.805
FRB090625	parkes	226.443	-60.030
FRB110220	parkes	50.828	-54.766
FRB110523	GBT	56.119	-37.819
FRB110626	parkes	355.861	-41.752
FRB110703	parkes	80.997	-59.019
FRB120127	parkes	49.287	-66.203
FRB121002	parkes	308.219	-26.264
FRB121102	arecibo	174.950	-0.225
FRB130626	parkes	7.450	27.420
FRB130628	parkes	225.955	30.655
FRB130729	parkes	324.787	54.744
FRB131104	parkes	260.549	-21.925
FRB140514	parkes	50.841	-54.611
FRB150418	parkes	232.665	-3.234
FRB150807	parkes	336.709	-54.400
FRB160317	UTMOST	246.050	-0.990
FRB160410	UTMOST	220.360	27.190
FRB160608	UTMOST	254.110	-9.539

- 30 FRBs have been reported to date Petroff et al. (2016)
- Poor localizations (\sim arcmin) No associations
- Typical observing frequency: 1.4 GHz
- No correlation with the Galactic Plane
- Rate: $\sim 10^{3\text{--}4}~\text{sky}^{-1}~\text{day}^{-1}$

frbcat.org

The Dispersion Measure

Light is dispersed by the material in the medium.

Dispersion Measure:

$$\mathsf{DM} = \int n_e \mathrm{d}\ell \quad \propto \nu^{-2}$$

All FRBs show unexpected large DMs.

Much larger than the contribution of our Galaxy

Estimated $z \sim 0.16\text{--}1.3$

4

The Dispersion Measure

Light is dispersed by the material in the medium.

Dispersion Measure:

$$\mathsf{DM} = \int n_e \mathrm{d}\ell \quad \propto \nu^{-2}$$

All FRBs show unexpected large DMs.

Much larger than the contribution of our Galaxy

Estimated $z \sim 0.16$ –1.3

4

What can FRBs be?

Credit: J. P. Macquart

Merging **Black Holes**

Supernovae

Magnetars

extra-Galactic The Implied rate of 1000s per day, per sky... but what are they? Micro-quasars

Galactic

Pernicious RFI Atmospheric effects

Magnetars

Flare stars

SETI

We are here

Evaporating **Black Holes**

> Super-giant **Pulses**

Gamma-ray Bursts

"Blitzars"

Credit: Jason Hessels

Pulsars

The only repeater, FRB 121102

The repeater FRB 121102

- The only one discovered by Arecibo (305-m diameter)
- The only repeater: Spitler et al. (2014, 2016), Scholz et al. (2016)
- In the Galactic anticenter
- No periodicities Active periods?
- One of the closest ones? DM \sim 560 pc cm⁻³ (×3 Galactic contribution)
- Two types of FRBs?

The First Precise Localization of a Fast Radio Burst

Chatterjee et al. (2017, Nature, 541, 58) Marcote et al. (2017, ApJL, 834, 8) Tendulkar et al. (2017, ApJL, 834, 7)

The precise localization of FRB 121102

Karl G. Jansky Very Large Array (VLA)

- 27 25-m dishes
- $\sim \! 100 \text{ km apart}$
- From Nov 2015 to Sep 2016
- 83 h at 1.6 and 3 GHz
- One burst on 23 Aug 2016
- 8 more in Sep 2016

Real-time correlation + raw data buffering to search for pulses

European VLBI Network (EVN)

- 6–10 stations (Europe, Asia, Africa)
- $\sim \! 10\,000$ km apart
- From Feb to Sep 2016
- $\bullet~$ 8 epochs at 1.6 and 5.0 GHz
- 4 bursts on 20 Sep 2016

The VLA localization of FRB 121102

5-ms image (dispersion corrected) of one burst.

Chatterjee et al. (2017, Nature, 541, 58)

The VLA localization of FRB 121102

- Persistent radio and optical counterparts
- *z* = 0.19273(8) ⇒ 972 Mpc
- $\bullet~$ Co-located within $\sim 0.1~ arcsec$
- Variability $\sim 10\%$
- Variability uncorrelated with bursts

•
$$L_{
m persistent} = 3 imes 10^{38} \ {
m erg \ s^{-1}}$$

•
$$L_{\rm bursts} \sim 10^{42} {\rm ~erg~s^{-1}}$$

Chatterjee et al. (2017, Nature, 541, 58) 11

but... are the bursts and the persistent counterpart physically related?

The EVN observations

- 4 bursts on 20 Sep 2016
 - The brightest one: ${\sim}4$ Jy
 - The other three \sim 0.2–0.5 Jy
- Arrival times obtained from Ar data
 Bursts also detected in other EVN stations
 - Coherently de-dispersion
 - Correlation with higher time resolution around the pulses
 - Calibration from the continuum data
- Images of bursts and persistent source

Marcote et al. (2017, ApJL, 834, 8)

from the pulsar B0525+21

Marcote et al. (2017, ApJL, 834, 8)

Marcote et al. (2017, ApJL, 834, 8)

Source size < 0.7 pc

Bursts coincident within 2σ : < **40 pc at 95% C.L.**

The optical counterpart

- Archival Keck data from 2014
- Gemini observation (Oct 2016)
- HST data in early 2017
- Extended 25-mag counterpart
- z = 0.19273(8) \Longrightarrow 972 Mpc
- Dwarf galaxy: Diameter: \lesssim 5–7 kpc Mass: $10^8~M_\odot$ Star Formation: $\sim 0.4~M_\odot~yr^{-1}$
- Low-metallicity star-forming region: Diameter of $\sim 1.3 \; \text{kpc}$

Tendulkar et al. (2017, ApJL, 834, 7) Bassa et al. (2017, ApJL, 843, 8)

Polarization and Faraday Rotation Measure

Observations at 5 GHz

Arecibo and Green Bank telescopes

Bursts $\sim 100\%$ linearly polarized

High Faraday rotation measure: $\approx 1.4 \times 10^5 \text{ rad m}^{-2}$

Michilli et al. (2018, Nature, 553, 182)

Discussion & Conclusions

Summary from FRB 121102

- FRB 121102 is associated with a compact source located in the star-forming region of a dwarf galaxy
- Are FRBs located in dwarf galaxies? Is FRB 121102 an exception? Are there more repeating FRBs?
- Localization of more FRBs is still needed, but this do not guarantee the unveiling of its nature
- Burst emission at other wavelengths?
- Still no clear scenario to explain FRB 121102...

Possible origins for FRB 121102

- Young superluminous supernovae powered by the spin-down power of a neutron star or magnetar (e.g. Murase et al., Piro et al. 2016)
- Neutron star interacting with the jet of a massive black hole ($\sim 10^{5-6} M_{\odot}$) (Pen & Connor 2015, Cordes & Wasserman 2016, Zhang 2018)
- Bursts produced by a strong plasma turbulence excited by the jet of a massive black hole (Romero et al. 2016, Vieyro et al. 2017)
- Synchrotron maser activity? (Ghisellini 2017)

- More precise localizations are required in this field
- Discoveries of new repeaters?
- Several instruments with time dedicated to discover new FRBs: UTMOST, Apertif, CHIME, ASKAP,...
- Some of them will produce arcsecond localizations
- Detection of bursts on mas scales are required to pinpoint associated counterparts

Thank you!

RadioNet has received funding from the European Union's Horizon 2020 research and

innovation programme under grant agreement No 730562.

Observations at other wavelengths

Bursts at other wavelengths:

- Optical upper-limits on burst fluence of < 0.046 Jy ms (Hardy et al. 2017)
- Optical/TeV-radio observations with MAGIC: (MAGIC Coll. et al. 2018)
- X-ray observations: Scholz et al. (2017, ApJ, 846, 80)

Concerning the persistent counterpart:

- X-rays: $L < 3 \times 10^{41} \text{ erg s}^{-1}$ Scholz et al. (2017, ApJ, 846, 80)
- + GeV: No significant Fermi/LAT emission: $\lesssim 4\times 10^{44}~{\rm erg~s^{-1}}$
- TeV: upper-limits from VERITAS and MAGIC (Bird et al. 2017, MAGIC Col. 2018) (Zhang & Zhang 2017)

Next step: find counterparts (higher resolution)

The main problem with FRBs is the lack of known counterparts

PARKES

We only have tentative distances (DM) o VLA

• Precision of several arcmin

• Hundreds/thousands of possible counterparts

The repeater FRB 121102 (Spitler et al. 2016, Nature, 531, 202)

The main problem on FRBs is the lack of known counterparts

- We only have a tentative distance
- Precision of several arcmins
- Hundreds/thousands of possible counterparts

The repeater FRB 121102

- The bursts seem to be localized in freq.
- Width of hundreds of MHz

- Rate vs *E*: power-law
- Different normalization depending on the "epoch"

Law et al. (2017, ApJ, 850, 76L)

The VLA localization of FRB 121102

(Chatterjee et al. 2017, Nature, 541, 58)

The optical counterpart

Tendulkar et al. (2017, ApJL, 834, 7)

The optical counterpart

BPT diagrams

Emission lines dominated by Star Formation

No emission detected at:

- sub-mm (ALMA) rms of 17 μ Jy - X-rays (*Chandra, XMM*) $< 5 \times 10^{41} \text{ erg s}^{-1} (5\sigma)$ - γ -rays (*Fermi*/LAT)

Simultaneous radio and X-ray observations

- 12 radio bursts observed
- No X-ray photons at those times $< 3 \times 10^{-11} \text{ erg cm}^{-2}$ or $\sim 4 \times 10^{45} \text{ erg}$
- No X-ray bursts at all $< 5 \times 10^{-10} \mbox{ erg cm}^{-2}$
- No Fermi/GBT detections: $< 4 \times 10^{-9} \text{ erg cm}^{-2}$
- X-ray Persistent emission? $L < 3 \times 10^{41} \mbox{ erg s}^{-1} \label{eq:L}$

Scholz et al. (2017, ApJ, 846, 80)

The radio counterpart

- Bursts and persistent radio source coincident within 40 pc
- Compactness at 5 GHz \Longrightarrow source $\lesssim 0.7$ pc
- No afterglows observed
- Extragalactic origin also supported by the EVN radio observations: Scintillation & scatter broadening
- Offset from the center of the host galaxy, within the star-forming region
- Brightness temperature $\,T_{\rm b}\gtrsim5\times10^7$ K

Observations at 5 GHz

Arecibo and Green Bank telescopes

Bursts $\sim 100\%$ linearly polarized

High Faraday rotation measure: $\approx 1.4 \times 10^5 \text{ rad m}^{-2}$

Michilli et al. (2018, Nature, 553, 182)

Polarization and Faraday Rotation Measure

Michilli et al. (2018, Nature, 553, 182)

Possible origins for FRB 121102 (facts)

- The star-forming region in the dwarf galaxy resembles the hosts of long-duration gamma-ray bursts and hydrogen-poor superluminous supernovae
- The persistent source is more consistent with a low-luminosity massive black hole
- This high rotation measure has only been observed in pulsars/magnetars around Sgr A* (a $10^6\text{-}M_{\odot}$ black hole)
- Structures observed in the bursts similar to other FRBs or the giant Crab flares

The repeating FRB 121102

Credit: L. Spitler (preliminary data)

No periodicities are observed at all.

Bursts exhibit short bandwidths (\sim 500 MHz)

Shortest separation between bursts: \sim 34 and 37 ms

Marcote et al. (2017, ApJL, 834, 8)

from the pulsar B0525+21

Marcote et al. (2017, ApJL, 834, 8)

Marcote et al. (2017, ApJL, 834, 8)

FRB 110220 and FRB 140514 were detected within 9 arcmin and 3-yr apart.

- FRB 110220. $DM = 944.4 \text{ pc cm}^{-3}$ (Thornton et al. 2013)
- FRB 140514. $DM = 562.7 \text{ pc cm}^{-3}$ (Petroff et al. 2015)

Probability of chance coincidence: 1-32%

Possible explanations: DM dominated by SNR (young and expanding) (Piro & Burke-Spolaor 2017)

FRB 131104 also observed at X-rays ("gamma")?

Swift detected a 100-s transient coincident with FRB 131104 (DeLaunay et al. 2016)

- 15-200 keV
- $E \sim 5 \times 10^{51} \ {\rm erg}$

However,

- $3-\sigma$ detection
- Change coincidence subestimated (Shannon & Ravi 2017)
- Would point out to a much different (and close) distance (Gal & Zhang 2017)

FRB 150418: The first announced association

Keane et al. (2016, Nature, 530, 453)

Parkes detection ATCA follow-up 2-hr later.

Association with a transient source Early-type galaxy at $z\sim 0.5$

... or just an unassociated AGN? Williams & Berger (2016) Vedanthan et al. (2016) Giroletti et al. (2016) Bassa et al. (2016)

