Evolution of AGN jets from multi-epoch core-shift studies

Alexander Plavin
Y. Y. Kovalev, A. Pushkarev, A. Lobanov

Astro Space Center, Moscow
Moscow Institute of Physics and Technology
Max-Planck-Institut für Radioastronomie

October 10, 2018
EVN Symposium

This presentation has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730562 [RadioNet].
Core shift in AGN jets

Due to synchrotron self-absorption (e.g. Blandford & Konigl, 1979)
apparent jet origin (core) location r_c depends on ν

Radio core at different frequencies
($v_5 > v_4 > v_3 > v_2 > v_1$)

Central black hole and accretion flow

Jet Obscuring Torus Narrow Line Region
Black Hole Broad Line Region Accretion Disk

Alexander Plavin, Y. Y. Kovalev, A. Pushkarev, A. Lobanov
Evolution of AGN jets from multi-epoch core-shift studies
Why study core-shift variability

AGN physics

- What is the nature of radio flares and how they propagate?
- Independent estimates of jet parameters close to its origin.

Astrometry

- Is AGN position jitter expected?
- Can group delay measurements be affected? Not when $r_c \sim 1/\nu$.
- Effect on VLBI/Gaia alignment?
 Talk by Petrov+ today.
Observational data

- Simultaneous 2 and 8 GHz VLBA+, 1994-2016
- 40 AGNs with jets & observed at > 10 epochs

Blue — all 4143 AGNs
Red — 40 studied here

Redshifts
up to $z = 2.37$,
median $z = 0.74$
Core-shift measurement

1. Acquire two-frequency calibrated images:

 2 GHz

 ![2 GHz Image]

 8 GHz

 ![8 GHz Image]

2. Align them: no absolute position.

3. Estimate core position on each image.

We developed an automated method.
Median magnitudes of 8-2 GHz core shift

40 quasars, 1691 individual observations

Median 0.55 mas

Median 3.2 pc
Median magnitudes of 8-2 GHz core shift

40 quasars, 1691 individual observations

Median 0.55 mas
⇒ \(r_c(8 \text{ GHz}) = 0.2 \text{ mas} \)

Median 3.2 pc
⇒ \(r_c(8 \text{ GHz}) = 1 \text{ pc} \)

assuming \(r_c(\nu) \sim 1/\nu \)
Detected 8-2 GHz core-shift variability

Median max – min difference 0.35 mas, maximum around 0.8 mas

Significant variability for 33 of 40 AGNs!
Assume: flux & position change due to the same parameter variations.

Find that $r_c \sim S_c^{0.3}$ \Rightarrow $N_c \sim S_c^{1.5}$ and $B_c \sim S_c^{-0.33}$
Flare propagation

Flare reaches core at ν_2

Flare reaches core at ν_1 while still affecting ν_2

Flare leaves the ν_2 core region

Flare leaves both core regions
Implications

Core position varies by ~ 0.5 mas \Rightarrow flare region extent is at least this long

Flares at ν_1 and ν_2 happen with a delay \Rightarrow cores $r_c(\nu_1)$ and $r_c(\nu_2)$ move separately \Rightarrow any fixed dependency like $r_c \sim 1/\nu$ cannot hold.

- Apparent core is not only shifted from the jet base, but the shift varies in time;
- Need to take variability of Δr_c into account when inferring physical parameters.
Apparent velocity: comparison with MOJAVE

MOJAVE measurements from Lister+13, 16.

Core velocity: lower bound on the jet flow speed.
Summary

- We measured 8-2 GHz core shift for the largest sample of AGN observations; typical values are ~ 0.5 mas;
- Variability detected for the majority of AGNs: up to 0.8 mas, typically ~ 0.3 mas;
- Cores at different frequencies move separately from each other: no fixed frequency dependence.
- Flare regions are extended along the jet, ≥ 2 pc.
- Independent method to probe flow speed: apparent core velocity as a lower bound.