Double nuclear structure discovered in 3C84

Junghwan Oh
Jeffrey Hodgson, Sascha Trippe, Sang-Sung Lee, Thomas Krichbaum,
Jae-young Kim, Bindu Rani,
Rocco Lico, Elisabetta Liuzzo, Michael Bremer, Anton Zensus

EVN 2018, Granada
This presentation has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730562 [RadioNet]
Introduction

- Probing jet launching mechanism (BZ vs BP) by direct imaging of jet launching region (jet morphology)

 - Highest possible angular resolution
 - Nearby target
 - High observation frequency

→ **3C84** is one of the best target sources
Angular scale
Angular scale

1 mas = 0.36 pc ≈ 11000 R_S

$M_\bullet = 3.2 \times 10^8 M_\odot$ (Park & Trippe 2017)

$H_0 = 70$ km/s/Mpc
14+ telescopes (+GBT / +KVN)
maximum baseline length : ~10,000 km
Angular resolution : 50 ~ 70 μas
Operating at 86 GHz (3mm)
Observations – uv coverage

2008 May 09
3C84 at 86.199 GHz in LL 2008 May 09

2011 May 07
3C84 at 86.252 GHz in L 2011 May 07

2013 Sep 27
3C84 at 86.252 GHz in L 2013 Sep 27

2014 May 25
3C84 at 86.284 GHz in L 2014 May 25

2014 Sep 25
3C84 at 86.284 GHz in L 2014 Sep 25

2015 May 16
3C84 at 86.243 GHz in L 2015 May 16
Consistent double nuclear structure in all 6 epochs
Consistent double nuclear structure in all 6 epochs
Consistent double nuclear structure in all 6 epochs

- No significant motion over 8 years
- Separation $\sim 70 \mu\text{as}$
- Brightness temperature
 - $C_{1a} : 1.0 \times 10^{11} \text{ K}$
 - $C_{1b} : 1.3 \times 10^{11} \text{ K}$
- Continued to Limb-brightened jet structure
• Distance between C1a and C1b
 \(\sim 800 \, R_S\) (~1 light-month, for \(M_{\text{BH}} = 3.2 \times 10^8 \, M_\odot\))

• If C1a + C1b is jet base, we have Blandford–Payne mechanism at work (Blandford–Znajek requires <10 \(R_S\))
- Distance between C1a and C1b
 \(\sim 800 \, R_S \) (~1 light-month, for \(M_{BH} = 3.2 \times 10^8 \, M_\odot \))

- If C1a + C1b is jet base, we have Blandford–Payne mechanism at work (Blandford–Znajek requires \(<10 \, R_S\))

- But the size is probably even too large for an accretion disk

- Accretion disk size vs. black hole mass (Morgan+ 2010)

 \[
 \log \left(\frac{R_{2500}}{cm} \right) = (15.78 \pm 0.12) + (0.80 \pm 0.17) \log \left(\frac{M_{BH}}{10^9 \, M_\odot} \right)
 \]

- Expected for 3C84: \(\sim 54 \, R_S \)
- Distance between C1a and C1b
 ~800 \(R_S \) (~1 light-month, for \(M_{BH} = 3.2 \times 10^8 \, M_\odot \))

- If C1a + C1b is jet base, we have Blandford–Payne mechanism at work (Blandford–Znajek requires <10 \(R_S \))

- But the size is probably even too large for an accretion disk

- Accretion disk size vs. black hole mass (Morgan+ 2010)

 \[
 \log \left(\frac{R_{2500}}{cm} \right) = (15.78 \pm 0.12) + (0.80 \pm 0.17) \log \left(\frac{M_{BH}}{10^9 \, M_\odot} \right)
 \]

- Expected for 3C84 : ~54 \(R_S \)

- High brightness temperature (>10^{11} \, K) indicates non-thermal emission
Relative locations: $r: R_s$

$T_B [\times 10^{10} \text{ K}]$

C1a

C1b
- T_B – PA and S_v – PA correlation
- T_B varies by factor of ~ 6

→ Emitters moving on a helical path

- Possible physical processes
 1. Doppler boosting
 2. Intrinsic evolution of the jet plasma
- $T_B - PA$ and $S_v - PA$ correlation
- T_B varies by factor of ~ 6

→ Emitters moving on a helical path

- Possible physical processes
 1. Doppler boosting
 2. Intrinsic evolution of the jet plasma

$T_B^{obs} \leq 2 \times 10^{11} K$

Equi-partition limit (Singal 2009)

$T_B^{em} \leq \sim 10^{11} K$

$\delta \approx 1 \quad \rightarrow \quad \beta \ll 1$
Intrinsic evolution of jet plasma

- Assuming all emission is synchrotron radiation
- No correlation of flux with time
- Multiple individual emitters cooling down rapidly
Intrinsic evolution of jet plasma

- Assuming all emission is synchrotron radiation
- No correlation of flux with time
- Multiple individual emitters cooling down rapidly

The cooling time scale:

\[\tau_{\text{cool}} = 7.74 \left(\frac{\delta}{1 + z} \right)^{-1} B^{-2} \gamma^{-1} \text{ seconds} \]

- \(\delta \approx 1, B \approx 10\mu T, \gamma \approx 10000, z = 0.0176 \)
- \(\sim 3 \) months
- Typical blazar-like value (Hodgson+ 2016)
Where is the Black Hole?

- Jet profile using multiple slices on stacked map
- Found local maxima
Where is the Black Hole?

- Jet profile using multiple slices on stacked map
- Found local maxima
Where is the Black Hole?

- Jet profile using multiple slices on stacked map
- Found local maxima
Where is the Black Hole?

- Jet profile using multiple slices on stacked map
- Found local maxima

\[\text{BH_parabola: (-0.006, 0.017)} \]
\[\text{BH_conical: (-0.004, 0.161)} \]

\[\sim 1800 \, R_S \]
\[\sim 190 \, R_S \]
Where is the Black Hole?

- If jet plasma is expanding and cooling, SMBH must be between C1a and C1b
- Viewing angle in C1 < 45°?
- Parabolic fit is more consistent
Where is the Black Hole?

- If jet plasma is expanding and cooling, SMBH must be between C1a and C1b
- Viewing angle in C1 < 45°?
- Parabolic fit is more consistent

Abdo et al. (2009) ~ 25°
γ-ray SED fitting

Fujita & Nagai (2017) ~ 65°
Jet / counter-jet

- γ-ray emission from C1 region (Hodgson et al. 2018)
- Viewing angle changed from the nuclear region to the extended structure?
An east-west oriented “double” nuclear structure in C1 region

The brightness temperature of C1a and C1b, in the order of 10^{11}K and shows a trend of increasing brightness temperature to the north for C1a and to the south for C1b. This behavior is consistent with a helical expanding jet sheath.

The behavior of the nuclear emission appears to be broadly consistent with that of a blazar.

We placed limits of the true location of the SMBH assuming either a parabolic or conical jet to between 190 R_S and 1800 R_S.
An east-west oriented “double” nuclear structure in C1 region

The brightness temperature of C1a and C1b, in the order of 10^{11}K and shows a trend of increasing brightness temperature to the north for C1a and to the south for C1b. This behavior is consistent with a helical expanding jet sheath.

The behavior of the nuclear emission appears to be broadly consistent with that of a blazar.

We placed limits of the true location of the SMBH assuming either a parabolic or conical jet to between 190 R_S and 1800 R_S