The Synergy between VLBI and Gaia astrometry
Huib Jan van Langevelde, JIVE/Leiden

With contributions from:
Luis Quiroga-Nunez (Leiden/JIVE)
Iniyan Natarajan, Rhodes Univ/SARAO
Roger Deane, Pretoria/Rhodes Univ

VLBI Gaia comparison:
Laurent Loinard (UNAM),
Wouter Vemmings (Chalmers),
Mareki Honma (NAOJ),
Akiharu Nagakawa (Kagoshima)

Bessel S269:
Katharina Immer (JIVE),
Mark Reid (CfA),
Ross Burns (JIVE)
& Bessel team

BAADE survey:
Lorant Sjouwerman (NRAO)
Ylva Pihlström (UNM)
Mike Rich (UCLA)
& BAADE team
Synergy VLBI & Gaia

- Advocating the value of VLBI astrometry
 - of Galactic maser sources
- Now Gaia has delivered

- Complementary in many aspects
 - Distances to individual objects
 - Pinpointing central object in molecular environment
 - Studying stellar populations
 - Detailed structure of the Galaxy
 - Spiral arms, embedded HMSF regions
 - Bulge & Bar, even through optical extinction
 - Kinematic parameters of the Galaxy
 - Size
 - Rotation curve

\[\pi = 3.67 \pm 0.27 \text{mas} \]

For Gaia - ICRF comparison: Jacobs talk, Charlot poster
Overwhelming Gaia output...

- **Focus on Galaxy construction**
 - Bears on structure formation in the Universe
 - Can we deduce recent and ongoing mergers?
 - What is the (spiral) type of our Galaxy
 - Its star formation rate and its history

- **Understand stellar populations**
 - Kinematics, distribution, age, metallicity

Phase space cut, Katz et al. 2018

The Gaia look
Overwhelming Gaia output:

- Focus on Galaxy construction
- Bears on structure formation in the Universe
- Can we deduce recent and ongoing mergers?
- What is the (spiral) type of our Galaxy
- Its star formation rate and its history
- Understand stellar populations
 - Kinematics, distribution, age, metallicity

Phase space cut, Katz et al. 2018

The Gaia look
Gaia vs VLBI parallaxes

- Gaia DR2: 5 parameter solution
- Accuracies can be comparable
- Water masers still win

From many sources, including:
- Loinard et al,
- Vlemmings & van Langevelde 2007, Kamezaki et al. 2016,
- Nakagawa et al. 2014,
- Kamezaki et al. 2012,
- Nyu et al 2011,
- Min et al. 2014,
- Nakagawa et al. 2008,
- Vlemmings et al 2004,
- Zhang et al. 2017,
- Nagakawa et al. 2016
- Jennings et al. 2018
Gaia vs VLBI parallaxes

- Gaia DR2: 5 parameter solution
- Accuracies can be comparable
- Water masers still win

From many sources, including:
- Loinard et al, Vlemmings & van Langevelde 2007, Kamezaki et al. 2016,
- Nakagawa et al. 2014,
- Kamezaki et al. 2012,
- Nyu et al 2011,
- Min et al. 2014,
- Nakagawa et al. 2008,
- Vlemmings et al 2004,
- Zhang et al. 2017,
- Nagakawa et al. 2016,
Understanding the differences

- Gaia zero point offset
 - Quite large when determined from this sample
- Giants have large Gaia residuals
- Structure and (colour) variability of photosphere
 - Convection related variability (Chiavassa et al. 2018)
- Some stars too bright…

Statistics seem OK when:

- Shifting by parallax offset
- And adding the excess noise
- VLBI parallaxes still valuable
Understanding the differences

- Gaia zero point offset
 - Quite large when determined from this sample

- Giants have large Gaia residuals
 - Structure and (colour) variability of photosphere
 - Convection related variability (Chiavassa et al. 2018)

- Some stars too bright…

- Statistics seem OK when:
 - Shifting by parallax offset
 - And adding the excess noise

- VLBI parallaxes still valuable
BeSSeL survey

- Progress to improve coverage
 - > 100 new targets
 - Largely with VLBA 6.7 GHz
- Best way to measure MW parameters
 - Demonstrated to bias-free
- Unique for localising spiral arms

See also talks by Immer, Rygl

Quiroga-Nunez et al., 2017
BeSSeL survey

- Progress to improve coverage
 - > 100 new targets
 - Largely with VLBA 6.7 GHz
- Best way to measure MW parameters
 - Demonstrated to bias-free
- Unique for localising spiral arms

Spiral arms by Reid et al. 2014

Quiroga-Nunez et al., 2017

See also talks by Immer, Rygl
BeSSeL source S269

- Recent result with VLBA
 - Previous VERA results controversial
 - Now 12 VLBA epochs and better image fidelity
- Confirming the closer distance
 - Is it in the Outer arm?
 - Is the Outer arm closer than previously thought?

water masers in S269 Quiroga Nunez et al 2018

π = 0.241 ± 0.012 mas

S269 wrt J0613+1306
Associated young stars?

- Next to S269 is NGC 2194
 - Similar distance
 - PM not inconsistent
 - Maser motions measured
 - Separated from core of cluster
- But in principle associated stars are expected
 - Can be used to refine distances
 - Maybe even ages
BAaDE project

- Bulge Asymmetries and Dynamic Evolution
 - Going for Mira stars with SiO masers
 - IR selection based on MSX
- Concentrated on $|b| < 5^\circ$
 - No optical data, but kinematics of bar
- 30,000 targets
 - VLA 19,000 observations complete
 - Very fast detection experiment
 - No time for phase calibration
 - ALMA ongoing
So, you want to do SiO astrometry?

- **Current practice of cross-calibration**
 - Coherence time short
 - Calibrators weak and few
 - Region of interest is central Galaxy, low dec
 - A-priori positions poor
 - SiO masers close to stars and variable

- Do 100–200 stars in the bar?

- **Addressing these limitations:**
 - Test observations with various parameters
 - Calibrator surveys
 - Explore non-imaging astrometry
 - Consider K/Q cross calibration?

SiO ring OH44 at 1.2kpc
Amiri et al., 2012

Inferring (point) source properties and phase calibration simultaneously
Preliminary simulations with Natarajan & Deane
View on inner Galaxy

- BAaDE samples disk and bar
 - Kinematics & population analysis
- Cannot be reached by Gaia
 - But overlap Gaia - BAaDE sample can constrain

$l = 0.0$
$l = 4.5$
$l = 9.0$
$l = 13.5$
$l = 18.0$
$l = 22.5$
$l = 27.0$
$l = 31.5$
$l = 36.0$

SiO maser candidates identified in Gaia DR2 with accurate distances Quiroga-Nunez in prep
BAaDE targets without Gaia counterparts

• BAaDE samples disk and bar
• Kinematics & population analysis
• Cannot be reached by Gaia
 But overlap Gaia - BAaDE sample can constrain population

\[l = 0 \]
\[l = 4.5 \]
\[l = 9.0 \]
\[l = 13.5 \]
\[l = 18.0 \]
\[l = 22.5 \]
\[l = 27.0 \]
\[l = 31.5 \]

\[\pm 0.5 \text{ kpc} \]

A_p \geq -1.5
A_p < -1.5

Perspecical calibration

SiO maser candidates identified in Gaia DR2 with accurate distances Quiroga-Nunez in prep

Work in progress: characterising population

- From 28,000 targets
 - 20,000 have 2Mass, Gaia counterpart
 - But must include some false positives
 - 2,554 have $\sigma_\pi/\pi < 0.2$
 - Of which 172 have SiO masers detected

- So far consistent with LPV AGB stars
 - As expected
 - Towards progenitor mass and age

BAaDE targets with Gaia distances
Future

- New telescopes can improve VLBI:
 - High mass star forming regions
 - Southern hemisphere campaigns (AuScope)
 - African VLBI Network developments
 - Refurbished communication dishes
 - SKA1-Mid will have VLBI capabilities
 - And receiver (band 5) for methanol (and water)
 - Major improvements in SNR and calibrator coverage
 - Evolved stars
 - VERA important for water masers
 - Simultaneous water and SiO masers on Korean telescopes
 - SiO masers on VLBA to be tested
 - progress with mm VLBI
 - may be targets for ngVLA long baselines

BeSSeL simulations featured on the SKA calendar on display in Dr. Koothrappali’s office (Quiroga-Nunez et al., 2017)
Synergy VLBI — Gaia

- previous VLBI astrometry OK
 - Gaia errors not trivial for AGB stars

- VLBI measuring spiral structure
 - And overall MW parameters

- May reach inner Galaxy kinematics
 - Gaia valuable for characterising population

- AVN & SKA will contribute

Credit to Luis-Henry Quiroga-Nuñez