Searching for intermediate-mass black holes in NGC3310

Megan Argo (UCLan)

Joe Coppola (UCLan), Hannah Earnshaw (Caltech), Mar Mezcua (Montreal), Tim Roberts (Durham)

© AAO ITSO office, Gemini Observatory/AURA & T.A. Rector (University of Alaska Anchorage)

IMBH characteristics

Link between the regimes of stellar mass BHs and SMBHs.

Possible seeds of SMBHs.

Implications for understanding how SMBHs (and galaxies) form and grow.

We expect them to be:

- $100 M_{\odot} < M < 10^{6} M_{\odot}$ (ish)
- off-nuclear
- point sources
- $L_x >= 10^{39} \text{ erg/s}$
- difficult to detect!

Fundamental plane of Gültekin+2009 with data from Merloni+2003, (Mezcua+2015)

IMBH candidates

ULX sources?

Evidence that the ULX population is heterogenous; most are stellar mass BHs with super-Eddington accretion (e.g. Earnshaw+2018).

Best candidate is HLX-1 (ESO 243-49) with $L_x \approx 10^{42}$ erg/s, periodic state transitions and radio jets. Mass estimates range from ~10³ to 10⁶M_o (e.g. Cseh+2015). Cannibalised dwarf galaxy core?

Globular cluster cores?

Collapse and coalescence in the core, but little gas and dust, so no strong accretion signatures expected.

The best candidate so far is in 47 Tuc (Kızıltan+2017) with $M_{BH}=2.2^{+1.5}_{-0.8}\times10^3\,M_\odot\,$ using dynamics of pulsars. No detectable electromagnetic counterpart, likely gasstarved.

Many candidates found by cross-correlating X-ray and optical catalogues (Roberts+2017).

A new ULX catalogue

Earnshaw, Roberts et al (2018, in prep)

Cross-correlated 3XMM-DR4 with RC3 & Catalogue of Neighbouring Galaxies

~2000 nearby galaxies covered

Lots of science possibilities... e.g. L vs host type

Almost 400 ULX sources in nearby galaxies

- point sources with $L_x > 10^{39}$ erg/s
- implies big BHs or super-Eddington accretion

Handful of IMBH candidates for follow-up One in an old friend...

NGC3310: Vital Statistics

Grand Design spiral Located in Ursa Major 13Mpc so 1" = 64pc 10h38^m46^s +53°30'12" (irritatingly circumpolar)

NGC3310: history

Ongoing active starburst and evidence of past merger activity.

Major merger? (Kregel & Sancisi 2001) from HI kinematics and optical morphology.

Minor merger? (e.g.Smith+1996)

Multiple minor mergers? (Wehner+2006) from photometry of the gas debris.

Could the remains of cannibalised galaxy still present?

The IMBH candidates

The IMBH candidates

ULX1 10:38:44.8 +53:30:04) $L_{x,1} = (8.81 \pm 1.62) \times 10^{39} \text{ erg/s}$

ULX2 (10:38:44.6 +53:30:07) $L_{x,2} = (6.09 \pm 0.60) \times 10^{39} \text{ erg/s}$

ULX3 (10:38:44.4 +53:30:05) $L_{x,3} = (5.57 \pm 0.53) \times 10^{39} \text{ erg/s}$

NGC3310: Observations

- EVN+e-MERLIN
- L-and C-band
- 6 hours each
- Phase ref: J1044+5322
- Theoretical RMS: 6µJy/beam
- Observed 2016

NGC3310: Detections?

May be...

NGC3310: Detections?

7σ detection at C-band within 1" of ULX1 peak 69µJy/beam

NGC3310: Caveats

7σ detection at C-band within 1" of ULX1 peak 69µJy/beam Using the fundamental plane relation of Gültekin+2009 gives a BH mass of ~6000M_☉ assuming association with ULX1. Needs a careful examination of the field.

e-MERLIN data not included.

L-band data has issues - in progress.

Should be variable if accretion-powered - need more data!

Searching for intermediate-mass black holes in NGC3310

Megan Argo (UCLan)

Joe Coppola (UCLan), Hannah Earnshaw (Caltech), Mar Mezcua (Canada), Tim Roberts (Durham)

© AAO ITSO office, Gemini Observatory/AURA & T.A. Rector (University of Alaska Anchorage)