Bias of core shift effect measurement in the
blazars jets
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The observed VLBI core in quasars is T__ =1 surface Core shift estimates are biased by a typical factor = 2, but it
depends on the observed core parameters in a highly non-linear
way. Bias can be corrected using the flexible model trained on
the results of simulations. Estimates of k from core shift
frequency dependence (Ar~A V%) are unbiased if core is
represented with equal number of components at each band.

and its position changes with frequency V[1]. The
value of the shift allows to estimate the magnetic field
at 1 pc: B, ~ (Ar ,_,)*’* assuming equipartition [2]

and B ~ (Ar __)>without [3]. It also can be used

to constrain the flow speed in core region [4, 5] that
occurred to be higher than estimated using N y
kinematics of the jet components.
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To assess the bias one needs to know the true

model. We created artificial sample ot ~1.5k sources
using BK model [1] on a grid of the parameters
conditioned on the observed MOJAVE sample
(Luminosity Function [6], apparent opening angles

|7] and speeds [8]). Using noise and uv-coverage of the
real data we compared frie values of the core shift

Ar with those one would estimate by difmap

. B, estimated assuming equipartition [2] are ~2x biased upward.

. Without equipartition assumption [3] ~ 1-2 orders of the mag.

. Reconciles B estimates from SED modelling and core shifts [9].

» Problem for MAD scenario [10].

. [3] found <Bmeq[3] / Beq[2]> ~ 1.6 for blazars (= 0.033 after
correcting for bias) and = 0.05 for radiogalaxies (we found
them to have practically unbiased core shift estimates).

. Brings flow speed estimates [4, 5] closer to the kinematical

modelfitting with and elliptic core model . ones.
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elliptic B < allows to estimate the (unbiased) core shift using
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Upper: 15.3-8.1 GHz core shifts Core shifts in blazgrs are typically overestimated.
_ N predicted by Random Forest Therefore, magnetic fields deduced from the core
0 0.0 0.2 0.4 trained on the artificial sample shifts are also overestimated by a factor of =2 (with)
Aris s —s1cm, (Mas)  Vstrueshifts. ) or ~10-100 (w /o0 equipartition assumption).

Frequency dependence of the core shift is not biased

Data used:

This research has made use of data from the
MOJAVE Database that is maintained by the
MOJAVE team (Lister et al., 2009, AJ, 137, 3718)
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