Detailed SiO proper motion analysis slow net expansion, small correlation with mag. field

K. Assaf, W. Cotton, P. J. Diamond, S. Etoka, I. Gonnidakis, E.M.L. Humphreys, **A.M.S. Richards**, M. Wittkowski

Presented on behalf of Khudhair Assaf, University of Wasit, Iraq; see Assaf, K. 2018 ApJ (submitted), Assaf et al. 2011, 2013

AGB star R Cas: vital statistics

- Distance ~176 pc
- V_{*}~24 km/s
- M_{\star} ~1.2 M_{\odot}
- R_{*} ~ 12.6 mas (2.22 au)
- \dot{M} ~ 6-10x10⁻⁷ M $_{\odot}$ /yr
- *P* ~ 430 d
- Observed for 23 epochs over 2 stellar periods using VLBA
- Polarization angle calibration accurate to ~10°
- Fractional linear pol. accuracy ~5%

Vlemmings+'02

Assaf+'11 & refs

Truong-Bach+'99

Weigelt+'00

Weigelt+'01; Truong-Bach+'98

R Cas SiO ϕ 0.1 - 1.8

Masers and the star

Inner circle: deconvolved stellar disc $R_* = 2.22$ au

Outer circle: limit of 'main' SiO maser ring $R \sim 3.5 R_{*}$ (outermost 8 R_{*})

Obs. other stars suggests radio photosphere at: 22 GHz~ 2R * 5 GHz~ 6R

20 mas

671 nm, 9/1994 Weigelt+96

R Cas polarization

- For this transition radiative decay rate $\Gamma < 1 \ \text{s}^{\text{-1}}$
- Stimulated emission rate for saturation (*Kemball*+09) $R=23 (T_b/2 \times 10^{10} \text{ K}) \times (d\Omega/0.01 \text{ sr}) \sim 15 \text{ s}^{-1} \text{ using}:$
 - Estimated mean T_b 2.8x10⁹ K (suggests saturation)
 - Beaming angle $d\Omega$ 0.047 sr
- Zeeman splitting of 86 GHz SiO (single dish)
 - Magnetic field 0.9 2.8 G (Herpin+06)
 - SiO Zeeman splitting rate $g\Omega \sim 900 \text{ s}^{-1}(Plambeck+'03)$
- $g\Omega \gg R \gg \Gamma$
- All supporting Zeeman (magnetic) polarization origin (Goldreich+'73)

R Cas proper motions

- 38 series of features matched for \geq 3 epochs (max. 13)
 - Separation ≤ 2 km/s 33 $- \leq 3$ mas position shift • 20 km/s + errors **3**77 - Position, alignment ~20% of all features - All in 'main ring' 10 >0 -1002 -20 -30 30 20 10 -10-20 -300 -40

Х

Transport of mass from star

- Average radial proper motion over 2 yr +0.4 \pm 0.1 km/s
 - Lower limit to V_{exp} (if entirely in plane of sky)
 - Upper 3D limit ~0.4 x $\sqrt{2}$ km/s
 - Wind takes ~67–47 yr to cross main ring
- Scale Ireland+'11 model density of wind to R Cas stellar properties
 - Mass in spherical shell corresponding to main ring is 2.4 x 10^{-5} M_{\odot}
 - Implies *M* 4-6 x 10⁻⁷ M_☉/yr
 - Upper limit agrees with
 Weigelt+'01 dust M
- No systematic rotation

Mass in SiO clumps

- Estimate volume in clouds from epochs with most maser clumps
 - Assume clumps are typical of all epochs even if not masing
 - Average clump extent 0.3 au
 - Matched clumps tend to be larger \sim 0.44 au
 - Filling factor ${\lesssim}1\%$, average mass per clump ${\sim}2.6x10^{\text{-9}}~M_{\odot}$
 - Total mass in clumps per epoch ~1.4x10^-7 M_{\odot}
 - Angle between EVPA and magnetic field vector <u>B</u> depends on angle θ between <u>B</u> and line of sight (*Goldreich*+'73)
 - θ <55° (van Vleck angle) gives
 EVPA perpendicular to <u>B</u>

Mass in SiO clumps

- Estimate volume in clouds from epochs with most maser clumps
 - Assume clumps are typical of all epochs even if not masing
 - Average clump extent 0.3 au
 - Matched clumps tend to be larger \sim 0.44 au
 - Filling factor ${\lesssim}1\%$, average mass per clump ${\sim}2.6x10^{\text{-9}}~M_{\odot}$
 - Total mass in clumps per epoch ~1.4x10^-7 M_{\odot}
 - EVPA 90° flips suggest SiO detected from segment of sphere excluding ~50° face-on cones
 - Assume clumps evenly distributed
 - Total mass in clumps ${\sim}2.2x10^{\text{-7}}~\text{M}_{\odot}$
 - Assuming wind density homogenous
 - Probably wrong

Magnetic force

- Estimate mean bulk energy density of each cloud:
 - $-E_{bulk}$ (bulk motion) ~ 0.0134 J/m³ (from proper motions)
 - E_{th} (thermal) ~ 0.0029 J/m³ (*Ireland/Gray* model)
 - Assume angular separation from star is total distance R
- The equivalent magnetic energy density $E_{\rm B}$ requires magnetic field strength $B = [(E_{\rm bulk} + E_{\rm th})/4x10^{-3}]^{0.5}$ G (Kemball+09)
 - *B* in range 0.2 4.5 G, mean 2 G
 - +one 19 G; prob. R underestimate, T and E_{th} overestimate
- Measured *B* range 0.9 2.8 G (*Herpin*+'06)
 - Magnetic field is comparable in energy to kinetic energy

Polarization alignment?

Polarization alignment?

- Select pairs of clumps where the EVPA is significant and differs by less than 11.25° or 22.5°
 - 13 or 22 pairs of features have EVPA within 22.5° orthogonal to proper motions
 - Most popular
 orientation at 2σ
 significance for
 either cut-off
 - Only ~half with radial motion
 - Only 4 in series consistently in expansion
 - Ignoring van Vleck flip

R Cas SiO: Conclusions

- ~20% of features identified for \geq 3 epochs out of 23
 - Clumps probably survive, masers vary
- Wind takes 50–70 years to cross SiO maser shell
 - Thickness ~2.5 R_* at net speed ~0.4 km/s
 - Long SiO shell crossing time could help dust formation
- \dot{M} SiO proper motions & *Ireland/Gray* model ~ \dot{M} dust obs.
- Slight preference for mag. field proper motion alignment
 - But small minority of features/large uncertainties
 - Complicated directions of field and motions
- Need VLBI+short spacings to detect all masers & resolve star
 - Model mass specifically in clumps
 - Better polarization calibration

What forces act on SiO at 2-5 R_* ?

- Heating⇒expansion⇒convection[®]
 - Fails once $\tau_{\rm NIR}$ <1 (inside 2 R_{\star})
 - But + pulsation = waves
- Flow mostly not along B lines?
 - (or data too messy...)
- Scattering by heat-resistant grains?
- Magnetic buoyancy?

- Obs. evidence for small-scale field complexity; *Lopez Ariste* model

Polarization angle EVPA

- Tendency for EVPA to be closer to radial or tangential than intermediate, for all features with significant polarization
- Angle between EVPA and magnetic field vector <u>B</u> depends on angle θ between <u>B</u> and line of sight (*Goldreich*+'73)
 - θ <55° (van Vleck angle) gives EVPA perpendicular to **<u>B</u>**
 - Otherwise parallel
- R Cas SiO consistent with radial magnetic field + peturbations
 - Masers beamed from a region extending a bit more than 55° out of the plane of the sky with the star

