

astronomy astrophysics Bonn and Cologne

Max-Planck-Institut für Radioastronomie

Gamma-ray emission in radio galaxies under the VLBI scope

R. Angioni (MPIfR-Bonn, U. Würzburg) 14th EVN Symposium, Granada 8-11 October 2018

Collaborators: Prof. E. Ros (MPIfR-Bonn) Prof. M. Kadler (U. Würzburg) Dr. R. Ojha (NASA/GSFC/UMBC) et al., for the TANAMI and *Fermi*-LAT collaborations

The radio-gamma connection in AGN

Strong connection between radio and γ-ray emission in large, blazar-dominated samples (e.g., Kovalev+09, Ackermann+11, Lico+17)

 γ-ray sources in large radio samples show preferentially higher Doppler boosting markers (Kovalev+09)

Image credit: DESY science communications

Radio and γ -ray properties of radio galaxies

• Well-established relationship between pc-scale jet and γ -rays in blazars

Radio and γ -ray properties of radio galaxies

- Well-established relationship between pc-scale jet and γ -rays in blazars
- Much less clear situation for radio galaxies
 - Mostly single-source studies (e.g. 3C 111, 3C 120, M 87, NGC 1275)
 - No systematic population study of VLBI-LAT properties of radio galaxies

Radio and γ -ray properties of radio galaxies

- Well-established relationship between pc-scale jet and γ -rays in blazars
- Much less clear situation for radio galaxies
 - Mostly single-source studies (e.g. 3C 111, 3C 120, M 87, NGC 1275)
 - No systematic population study of VLBI-LAT properties of radio galaxies

The TANAMI program

Tracking Active Nuclei with Austral Milliarcsecond Interferometry

- ~100 jets at $\delta < -30^{\circ}$ declination at mas resolution since 2007
- Dual frequency 8.4 GHz and 22.3 GHz, 3-4 epochs/yr

TANAMI radio galaxy sample

B1950 name	Catalog name	Class	Redshift	RA(J2000)	Dec(J2000)	LAT
0518 - 458	Pictor A	FR II	0.035	79.957	-45.779	yes
0521 - 365	PKS 0521-36	RG/SSRQ	0.057	80.742	-36.459	yes
0625 - 354	PKS 0625-35	FR I/BLL	0.055	96.778	-35.487	yes
0825 - 500	PKS 0823-500	RG	-	126.362	-50.178	no
1258 - 321	PKS 1258-321	FR I	0.017	195.253	-32.441	no
1322 - 428	Centaurus A	FR I	0.0018	201.365	-43.019	yes
1333 - 337	IC 4296	FRI	0.013	204.162	-33.966	no
1343 - 601	Centaurus B	FR I	0.013	206.704	-60.408	yes
1549 - 790	PKS 1549-79	RG/CFS	0.15	239.245	-79.234	no
1600 - 489	PMN J1603-4904	MSO	0.23	240.961	-49.068	yes
1718 - 649	PKS 1718-649	GPS/CSO	0.014	260.921	-65.010	yes
1733 - 565	PKS 1733-56	FR II	0.098	264.399	-56.567	no
1814 - 637	PKS 1814-63	CSS/CSO	0.065	274.896	-63.763	no
2027 - 308	PKS 2027-308	RG	0.54	307.741	-30.657	no
2152 - 699	PKS 2153-69	FR II	0.028	329.275	-69.690	no

TANAMI radio galaxy sample

B1950 name	Catalog name	Class	Redshift	RA(J2000)	Dec(J2000)	LAT
0518-458	Pictor A	FR II	0.035	79.957	-45.779	yes
0521 - 365	PKS 0521-36	RG/SSRQ	0.057	80.742	-36.459	yes
0625 - 354	PKS 0625-35	FR I/BLL	0.055	96.778	-35.487	yes
0825 - 500	PKS 0823-500	RG	-	126.362	-50.178	no
1258 - 321	PKS 1258-321	FR I	0.017	195.253	-32.441	no
1322 - 428	Centaurus A	FR I	0.0018	201.365	-43.019	yes
1333 - 337	IC 4296	FR I	0.013	204.162	-33.966	no
1343 - 601	Centaurus B	FR I	0.013	206.704	-60.408	yes
1549 - 790	PKS 1549-79	RG/CFS	0.15	239.245	-79.234	no
1600 - 489	PMN J1603-4904	MSO	0.23	240.961	-49.068	yes
1718 - 649	PKS 1718-649	GPS/CSO	0.014	260.921	-65.010	yes
1733 - 565	PKS 1733-56	FR II	0.098	264.399	-56.567	no
1814 - 637	PKS 1814-63	CSS/CSO	0.065	274.896	-63.763	no
2027 - 308	PKS 2027-308	RG	0.54	307.741	-30.657	no
2152 - 699	PKS 2153-69	FR II	0.028	329.275	-69.690	no

Pictor A

Image credit: X-ray: NASA/CXC/Univ. of Hertfordshire/M. Hardcastle et al. Radio: CSIRO/ATNF/ATCA

Classic FR II, z = 0.035

- Earlier VLBI study found jet viewing angle θ < 51° (Tingay+00)
- Detected by *Fermi*-LAT in 2012 (Brown+12) flux underestimated by SED model of western hot-spot, probably jet origin/contribution

Kinematic analysis: Pictor A

Pictor A: jet emission confirmed?

Angioni+ in prep.

Pictor A: jet emission confirmed?

Pictor A: jet emission confirmed?

TANAMI radio galaxy sample

B1950 name	Catalog name	Class	Redshift	RA(J2000)	Dec(J2000)	LAT
0518 - 458	Pictor A	FR II	0.035	79.957	-45.779	yes
0521 - 365	PKS 0521-36	RG/SSRQ	0.057	80.742	-36.459	yes
0625 - 354	PKS 0625-35	FR I/BLL	0.055	96.778	-35.487	yes
0825 - 500	PKS 0823-500	RG	-	126.362	-50.178	no
1258 - 321	PKS 1258-321	FR I	0.017	195.253	-32.441	no
1322 - 428	Centaurus A	FR I	0.0018	201.365	-43.019	yes
1333 - 337	IC 4296	FRI	0.013	204.162	-33.966	no
1343 - 601	Centaurus B	FR I	0.013	206.704	-60.408	yes
1549 - 790	PKS 1549-79	RG/CFS	0.15	239.245	-79.234	no
1600 - 489	PMN J1603-4904	MSO	0.23	240.961	-49.068	yes
1718 - 649	PKS 1718-649	GPS/CSO	0.014	260.921	-65.010	yes
1733 - 565	PKS 1733-56	FR II	0.098	264.399	-56.567	no
1814 - 637	PKS 1814-63	CSS/CSO	0.065	274.896	-63.763	no
2027 - 308	PKS 2027-308	RG	0.54	307.741	-30.657	no
2152 - 699	PKS 2153-69	FR II	0.028	329.275	-69.690	no

Sample properties: extension to MOJAVE

Radio galaxies in the MOJAVE sample

B1950 name	Common name	Redshift	Flux	Spectral index	Curvature	TS	Ref.
0007 + 106	Mrk 1501	0.0893	$< 4 \times 10^{-9}$	-	-	1.87	[2]
0026 + 346	B2 0026+34	0.517	$< 3 \times 10^{-9}$	-	-	6.76	[2]
0055 + 300	NGC 315	0.0165	$(5.5 \pm 1.3) \times 10^{-9}$	$2.29 {\pm} 0.11$	-	77.3	[2]
0108 + 388	GB6 J0111+3906	0.668	$< 5 \times 10^{-9}$	-	-	2.95	[2]
0305 + 039	3C 78	0.0287	$(7.0 \pm 1.0) \times 10^{-9}$	$1.96 {\pm} 0.07$	-	385	[1]
0309 + 411	NRAO 128	0.136	$(5.7 \pm 1.7) \times 10^{-9}$	2.29 ± 0.13	-	53.6	[2]
0316 + 413	3C 84	0.018	$(3.36 \pm 0.04) \times 10^{-7}$	2.006 ± 0.008	$0.060 {\pm} 0.004$	9.63×10^{4}	[1]
0415 + 379	3C 111	0.0491	$(3.4 \pm 0.3) \times 10^{-8}$	$2.75 {\pm} 0.07$	2. 	186	[1]
0430 + 052	3C 120	0.033	$(2.8 \pm 0.3) \times 10^{-8}$	2.70 ± 0.06	-	226	[1]
0710 + 439	B3 0710+439	0.518	$< 6 \times 10^{-10}$	-	-	0.0	[2]
1128 - 047	PKS 1128-047	0.27	$(7.6 \pm 1.3) \times 10^{-9}$	2.46 ± 0.10	-	58.9	[2]
1228 + 126	M87	0.00436	$(1.9 \pm 0.2) \times 10^{-8}$	2.08 ± 0.04	107	1410	[2]
1345 + 125	4C + 12.50	0.121	$< 1 \times 10^{-9}$	-	-	0.97	[2]
1509 + 054	PMN J1511+0518	0.084	$< 2 \times 10^{-9}$	2	-	0.35	[2]
1514 + 004	PKS 1514+00	0.052	$(8.8 \pm 1.6) \times 10^{-9}$	$2.46 {\pm} 0.10$	-	82.3	[2]
1607 + 268	CTD 93	0.473	$< 7 \times 10^{-9}$	-	-	5.88	[2]
1637 + 826	NGC 6251	0.0247	$(2.2 \pm 0.2) \times 10^{-8}$	$2.28 {\pm} 0.04$	0.09 ± 0.02	1610	[2]
1845 + 797	3C 390.3	0.0555	$< 2 \times 10^{-9}$		-	5.35	[2]
1957 + 405	Cygnus A	0.0561	$< 4 \times 10^{-9}$	-	-	2.76	[2]
2021 + 614	OW 637	0.227	$< 1 imes 10^{-8}$	-		18.6	[2]
2128 + 048	PKS 2127+04	0.99	$< 2 \times 10^{-9}$	-	-	0.2	[2]

VLBI core brightness temperature

 $T_B \propto S/\theta^2$

No significant distinction in:

- median VLBI core luminosity
- median VLBI jet flux
- maximum apparent speed
- VLBI core dominance

LAT flux vs. VLBI core flux

Kendall's tau $\tau = 0.32$ *p*-value = 0.006

Compact radio emission is related to high-energy emission

LAT flux vs. VLBI jet flux

LAT luminosity vs. VLBI core luminosity

1:1 correlation induced by common redshift dependence

LAT luminosity vs. VLBI core dominance

Kendall's tau $\tau = 0.16$ *p*-value = 0.17

High-energy emission unrelated to Doppler boosting markers

VLBI core T_b vs. LAT luminosity

Kendall's tau $\tau = 0.08$ p-value = 0.5

High-energy emission unrelated to Doppler boosting markers

Conclusions

- We have performed the first systematic study on the connection between pc-scale properties and high energy emission in misaligned jets
- Selected individual source result : Pictor A
 - First counter-jet detection, improved intrinsic jet parameter estimates
 - Possible association between component ejection and gamma-ray activity
- Gamma-ray emission in radio galaxies:
 - High-energy flux correlates with pc-scale radio core flux
 - No significant correlation with Doppler boosting markers

Conclusions

- We have performed the first systematic study on the connection between pc-scale properties and high energy emission in misaligned jets
- Selected individual source result : Pictor A
 - First counter-jet detection, improved intrinsic jet parameter estimates
 - Possible association between component ejection and gamma-ray activity
- Gamma-ray emission in radio galaxies:
 - High-energy flux correlates with pc-scale radio core flux
 - No significant correlation with Doppler boosting markers

Thank you for the attention!

Backup slides

PKS 0521-36

J2000 Declination

Misclassified BL Lac, likely misaligned jet, z = 0.055

- Small core dominance suggests weak boosting (Pian+96)
- SED spine-sheath model suggests viewing angles 6° < θ < 15° (D'Ammando+15)
- ALMA view of large-scale structure supports small beaming and large angle (Leon+16)

Image credit: ALMA Bands 3,6,7 (ν_{eff} ~220 GHz): Leon et al. 2016

Kinematic analysis: PKS 0521-36

PKS 0521-36: fast flares, slow jet

Angioni+ in prep.

PKS 0521–36: fast flares, slow jet

Angioni+ in prep.

VLBI core luminosity

KS = 0.41*p*-value = 0.073

$$S_{jet} = S_{tot} - S_{core}$$

Maximum apparent speed

KS = 0.23*p*-value = 0.70

VLBI core dominance

$$CD = S_{core}/S_{tot}$$