Extreme Physics at Extreme Baselines

Andrei Lobanov, MPIfR, Bonn

A Step Further with RadioAstron

RadioAstron observations provide a factor of ~10 improvement in angular resolution, revealting the structural detail down to the linear scales below 1000 R_q (and reaching ~10 R_q in close objects). What is the physics there?

Diagnostics of Synchrotron

Pitch angle

- Emission from a single particle: $P(\omega) = \frac{\sqrt{3}}{8\pi^{2}\epsilon_{0}c} \frac{q^{3}B\sin\alpha}{m} F(x)$
- Canonic assumptions: random pitch angle and a power law particle energy distribution $N(\gamma) d\gamma = N(\gamma_0) \gamma^{-s} d\gamma$
- □ Maximum brightness temperature set by inverse-Compton losses, with $T_{b,C} \cong 5 \times 10^{11}$ K, if $L_{IC} = L_{synch}$ or $u_{ph} = u_B$ (Kellermann & Pauliny-Toth 1969), or by equipartition, with $T_{b,e} \cong 5 \times 10^{10}$ K, if $u_p = u_B$ (Readhead 1994).

2.8

,2.6 (2.6

Growing number of observations of much higher values of $T_{\rm b}$.

Interferometric Measurements

□ Interferometry: measuring visibility amplitude, *V*, at a spatial (Fourier) frequency, *q*. Then for a source with

$$T_b = \frac{I_{\nu}c^2}{2k\,\nu^2} = \frac{S\,\lambda^2}{2k\,\Omega}.$$

- -- and a single measurement of V on a baseline B, -- with the proxies $S \to V$ and $\theta \to 1/q$ $(\Omega \to \pi/q^2)$,
- -- and recalling that $q = {}^{B}/_{\lambda}$,

one gets

$$T_b = \frac{I_v c^2}{2k v^2} = \frac{V B^2}{2\pi k}$$

That is: going to longer baselines is the best way to detect extreme brightness temperatures

Visibility Based Constraints on T_b

- \Box To get to T_b from V_q , need to know V_0
- \Box ... or use $V_q < V_0$ and $V_q + \sigma_q \leq V_0$ to constrain T_b :

□ From $V_q < V_0$, can arrive at the minimum T_b supported by V_q $T_{b,\min} = \frac{\pi e}{2k} B^2 V_q \approx 3.09 \left(\frac{B}{km}\right)^2 \left(\frac{V_q}{mJy}\right)$ [K]

□ With $V_q + \sigma_q \le V_0$, can obtain a limiting T_b for a structure which is resolved at the Fourier spacing q

$$T_{\text{b,lim}} = \frac{\pi B^2 \left(V_{\text{q}} + \sigma_{\text{q}} \right)}{2k} \left[\ln \frac{V_{\text{q}} + \sigma_{\text{q}}}{V_{\text{q}}} \right]^{-1}$$
$$= 1.14 \left(\frac{V_{\text{q}} + \sigma_{\text{q}}}{\text{mJy}} \right) \left(\frac{B}{\text{km}} \right)^2 \left(\ln \frac{V_{\text{q}} + \sigma_{\text{q}}}{V_{\text{q}}} \right)^{-1} [\text{K}]$$

Lobanov 2015

Brightness Temperature Runs

□ MOJAVE and 3mm GMVA surveys: Can trust to $T_{b,lim}$ to be a good measure. Hence a good tool for RA AGN survey.

What Do We Get from RadioAstron?

- □ Most of the AGN imaged/modelfitted with RA show $T_{b,min} \ge 10^{13}$ K and $T_{b,lim} \ge 10^{14}$ K
- Similar results are coming from the visibility based estimates made from the RA survey data.
- Should we blame it on Doppler, or believe it (and start to get worried)?

Visibility T_{b} in the uv-plane

Tells you on which scales the source is the brightest. Perhaps this can be used for modelling the brightness distribution on different scales?

Multiple *T_b* components?

2mas

Modelling of combined L,C,K-band RA data on 0836+710 with multiple regions (scales) of constant brightness temperature

What if You Crank Up the **B**?

Taking a look at a "normal" IC-loss dominated plasma in a strong magnetic field gives:

$$T_{b,max} \sim 7 \times 10^9 \,\mathrm{K} \,\left(\frac{B^{3/4}}{\mathrm{G}}\right)$$

which would indicate $B \cong 10^6$ G for $T_b = 3.5 \times 10^{14}$ K.

- □ This, of course, also implies a sky-rocketing $\nu_m \propto B^{1/2}$.
- □ However, the rogue v_m can be kept low if the plasma particle density $N_0 \propto B^{-7/2}$.
- □ This is actualy pretty feasible for:
 - a "runaway" cell in a turbulent flow;
 - a BZ beam inside of BP jet;
 - a truly "indigenous" pair creation (for $B > 10^{13}$ G)

Where Else Can Those B-fields Hide?

- □ In the collimation profiles of inner jet (NGC1052, Baczko+2016) $B > 10^4$ G
- In extremely well structured polarization (Gómez+2016), pointing towards a radial B-field.
- □ In extreme opacity profiles (e.g. IC 310, Schulz+2016), $B > 10^4$ G
- In extremely high rotation measures (Martí-Vidal+ 2015), RM > 10⁸ rad/m²

Summary

- RadioAstron really detects brightness temperatures in excess of 10¹³ K and likely even larger than 10¹⁴ K.
- These detections suggest potential emergence of new physics in the immediate vicinity the event horizon.
- □ A viable possibility for having $B > 10^6$ G on these scales.
- Good evidence for B∼ 10³—10⁴ G in the nuclear region (Baczko+ 2016).
- Perhaps even stronger fields are implied by RM > 10⁸ rad/m² measured with ALMA (Marti-Vidal+ 2015).
- □ The quest for understanding the high T_b and the actual physical conditions near the event horizon scales must therefore continue.